
11:15 am

Introduction to SSL or, What's New in MQ
Channel Security
Morag Hughson
hughson@uk.ibm.com

Channel Security - Agenda
Security Problems
Secure Sockets Layer (SSL)
WebSphere MQ and SSL

WebSphere MQ Configuration Tasks
Security Administration Tasks

Security Problems
Eavesdropping

How do I stop someone from seeing the information I send?

Tampering
How can I detect if someone has intercepted my information and changed
it?

Impersonation
How can I be sure who the information is from?
How can I be sure who I am exchanging information with?

 N

 O

 T

 E

 S

Security Problems : Eavesdropping - Notes
We are going to look at three main security problems in turn, eavesdropping, tampering
and impersonation.
To deal with the problem of eavesdropping, you need to encrypt your information before
you send it so that an eavesdropper cannot read your information. We will look at the
different ways you can encrypt your message and what the problems are associated with
them.
To deal with the problem of tampering, you can use a one-way hash function.
To deal with the problem of impersonation, you need to be able to verify the sender of the
information and also to be able to authenticate the partner you are exchanging information
with. Only the owner of the public key can decrypt information encrypted using it. However,
how do you really know who the owner of the public key is?

Cryptography

decryptionencryption

plaintext plaintext

Symmetric Key

Secret Key

ciphertext

Cryptography

decryptionencryption

plaintext plaintext

Asymmetric Key

Bob

Bob's Public Key Bob's Private Key

Public/Private Key Pairs

ciphertext

 N

 O

 T

 E

 S

Cryptography - Notes
The eavesdropping problem can be solved by encrypting your information. We will look at
symmetric and asymmetric keys.
The sender and the recipient could secretly agree on an algorithm to use to encrypt your
information, a very simple example of which is add 'n' to each byte of your information, and
the recipient subtracts 'n' from your encrypted information to get back to the original. This
is known as a symmetric key algorithm - you can reverse the algorithm to decrypt the
information. This type of key is also known as a secret key. This kind of key does however
pose one problem. How do you secretly agree the algorithm? This is known as the key
distribution problem.
The other way is that you publish an algorithm for everyone to use to encrypt information
to send you and then use a private algorithm to decrypt the information. The public
algorithm cannot be reverse engineered to create the private algorithm. This is known as
an asymmetric key algorithm. In this case there is a public key known to all, and a private
key known only to you. There is no key distribution problem here.

Asymmetric Key - Use both ways

plaintext plaintext

decryptionencryption

Bob

Bob's Public Key Bob's Private Key

ciphertext
Anyone

For your eyes

only

encryptiondecryption

plaintext plaintext
BobEveryone

ciphertext

It's from Bob!

 N

 O

 T

 E

 S

Asymmetric Key - Use both ways - Notes
An asymmetric key can be used to both encrypt or decrypt data. This gives two slightly
different uses as are depicted on this foil.
Anyone could send Bob a message, encrypting it with his public key. Doing this ensures
that only Bob can decrypt the message with his private key - it is for his eyes only.
Bob could send a message, encrypting it with his private key. Everyone who gets hold of
that message would be able to decrypt it using Bob's public key and be assured that the
message had come from the owner of that private key - Bob.

Cryptography
Symmetric Keys - Secret Keys

Relatively fast
Poses key delivery challenges when faced with large numbers of
senders/receivers
The key has to be known only by the sender/receiver...

Asymmetric Keys - Public/Private Key Pairs
Message encrypted with one key can only be decrypted by the other one
Slower than secret-key cryptography
Designed to accommodate key delivery and scalability

Asymmetric Keys can be used to solve the key distribution challenges
associated with symmetric keys

Standard Key Sizes
512 bits Low-strength key
768 bits Medium-strength key
1024 bits High-strength key

 N

 O

 T

 E

 S

Cryptography - Notes
Both types of cryptography have benefits and costs. Symmetric keys can encrypt your
data relatively fast in comparison to asymmetric keys. However, symmetric keys suffer
from the key distribution problem. If you combine the two type of cryptography together,
you can see that you could use assymmetric key cryptography to deliver your secret,
therefore getting around the key distribution problem, and then use the faster symmetric
key for your bulk data transmission.
We will see later that that is exactly what SSL does.
Although a key could be any size, the standard key sizes that are used are 512 bits which
is a low-strength key, 768 bits and up to 1024 bits as a high-strength key.

Hash Function

 Hash
Function hMessage of length n

Fixed Fixed
length, length,
short short
numbernumber

Hash Function
Computes the message digest or Message Authentication Code (MAC)
Easy to compute
Very difficult to reverse
It should be computationally infeasible to find two messages that hash to
the same thing.

 N

 O

 T

 E

 S

Hash Function - Notes
To be able to detect if someone has tampered with your message whilst in transit you can
make use of a one-way hash function. The message is passed through this function which
results in a short fixed length number which is unique to the contents of this message.
There is no way to determine the message from the one-way hash that is any simpler than
going through all the possible values of the original message and computing the hash of
each one.
The result is known as the message digest or message authentication code (MAC). When
I send the message I also send the digest.
Any change to the message in transit will, with very high probability, result in a different
message digest, therefore alerting the user to the change.
It is computationally infeasible to find a message which corresponds to a given message
digest, or to find two different messages which produce the same message digest.

Bob

Digital Signature

hhhh
Hash

Function hhhh
Alice "signs" the

hash (encrypts the
hash with her
private key)

Alice Alice's
plaintext

Bob decrypts the
signed hash with
Alice's public key

hhhh hhhh
If hashes match:

Only Alice could
have signed
Plaintext didn't
change in transit

hhhh
Hash

Function

Bob hashes the plaintext
to derive the hash

 N

 O

 T

 E

 S

Digital Signatures - Notes
Digital signatures combine the use of the one-way hash function and public/private key
encryption.
The message is hashed to provide a number, the hash number or message digest. This
hash number is encrypted using Alice's private key to create the digital signature. The
recipient of the message, in this case Bob, can also hash the message to get a hash
number, and can decrypt the digital signature using Alice's public key, to get her hash
number. If these numbers match then the message did come from Alice and also we know
it hasn't been changed since it was signed.

Alice Bob

1 Sends her Public key to Bob

4 Uses Tom's Public key
instead of Alice's one

2 Intercept the message
 get Alice's Public key

Tom (Alice's Husband)

3 Sends his Public key to Bob

Jealous Husband

 N

 O

 T

 E

 S

Jealous Husband - Notes
The initial transfer of public keys can be subject to a man-in-the-middle attack.
For example, Alice wants to send her public key to Bob so that he can use it to encrypt his
transmissions to her. Alice's jealous husband, Tom, intercepts her message and replaces
her public key with his own before sending it on to Bob. When Bob receives the key and
encrypts his message with it, Tom can intercept the message and decrypt it with his
private key to spy on them.
This then poses the question, how can I trust a public key?

Alice Bob1) Alice
Request signing certificate

Digital Certificate

A
Public

2) Certification Authority (CA)
Receive signing public key

Certification Authority

Send public key to CA
Generate key pair

A
Private

A
Public

Alice's Digital
Certificate

CA Sig

Build and return signing certificate

B
Public

B
Private

B
Public

Bob's Digital
Certificate

CA Sig

 and Bob

Digital Certificates - More info
Certificate request

the sender's identity
Distinguished Name, well known format X.500 series

the sender's public key
generally money (though sometimes internal certification)

Certificate, X.509 standard
the sender's verified identity
the sender's public key
the Certification Authority's digital signature
Expiry Date

User Certificate
Create using Digital Certificate Management tool of choice
Binds an identity to a public key

Certification Authority
Trustworthy Authority
"Well known" public key, to use for encryption of request for certificate

Distinguished Name
Well defined format

CN="Morag Hughson" L=Hursley O=IBM
OU="WebSphere MQ Development" C=England

CN - Common Name
T - Title
L - Locality name
ST/SP/S - State or Province name
O - Organisation name
OU - Organisational Unit name
C - Country

 N

 O

 T

 E

 S

Digital Certificate - Notes
A Digital certificate contains information about the individual, for example their name and
company, and also their public key. The certificate is signed, with a Digital Signature, by
the Certification Authority (CA).which is a trustworthy authority.
So in our example, Alice and Bob would need to request a signing certificate from the
Certification Authority. Instead of sending each other their public keys, they would send
them to the CA. The CA would verify the identity of the sender, and then create the
certificates for Alice and Bob to use.
To obtain a digital certificate, one needs to send one's identity to the Certification
Authority. This information is sent in a standard format that is defined by the X.500 series
of standards. This identifying information is accompanied by the sender's public key. If the
certificate is requested from an external CA such as Verisign, then the certificate will also
cost money.
For testing purpose, or internal only use, it is also possible to have user certificates.
These are not signed by an external CA, but instead, created and signed using whichever
digital certificate management tool your company chooses to use, for example, RACF on
z/OS. This has the major advantage that you don't have to pay an external CA for every
certificate you produce. On the other hand, such certificates cannot be used to
authenticate connections from outside the organization.

Trusting a Digital Certificate

Alice's Digital
Certificate

CA Sig
= hhhh

Hash
Function

CA's Digital Signature
Allows tampering to be detected

hhhh
If hashes don't
match:

Certificate has
been tampered
with

!h
Hash

Function

hhhhhhhhCA CA

SignedSigned

hhhhhhhhCA CA

SignedSigned

Signed by CA at creation

CA Sig

Digital Certificate = Plaintext
Can be subject to tampering

 N

 O

 T

 E

 S

Trusting a Digital Certificate - Notes
If Tom can intercept Alice's Key, can he not also intercept Alice's Certificate? How do I
trust the certificate that has been sent to me? Surely someone could tamper with a
certificate to pretend to be someone they're not?
This is where the CA signature comes into effect. A digital certificate can simply be thought
of as a peice of plaintext that could be subject to tampering. After all it is just a file on your
computer. How can we detect if someone has tampered with the certificate we are going
to use.
Remember on the Digital Signature foil, we showed Alice signing her plaintext before
sending it to Bob. Bob could then check the signature to ensure that Alice's message had
not been tampered with. The same technique is used to determine whether a digital
certificate has been tampered with.
The CA calculate the hash value of the plaintext (our certificate) and then signs that hash
value with the CA private key to generate a CA digital signature. To check that the
certificate is valid, the CA's digital signature can be decrypted using the CA public key (well
known CA public keys are installed in many of the security products that use SSL) to check
that the hash values match.

Secure Sockets Layer
Protocol to allow transmission of secure data over an insecure
network
Combines these techniques

Symmetric / Secret Key encryption
Asymmetric / Public Key encryption
Digital Signature
Digital Certificates

to combat security problems
Eavesdropping

Encryption techniques
Tampering

Digital Signature
Impersonation

Digital Certificates

 N

 O

 T

 E

 S

Secure Sockets Layer - Notes
Secure Sockets Layer (SSL) is an industry-standard protocol that provides a data security
layer between application protocols and the communications layer, usually TCP/IP. The
SSL protocol was designed by the Netscape Development Corporation, and is widely
deployed in both Internet applications and intranet applications. SSL defines methods for
data encryption, server authentication, message integrity, and client authentication for a
TCP/IP connection. SSL uses public key and symmetric techniques to provide the
following security services:
Message privacy
SSL uses a combination of public-key and symmetric key encryption to ensure message
privacy. Before exchanging messages, an SSL server and SSL client perform an
electronic handshake during which they agree to use a session key and an encryption
algorithm. All messages between the client and the server are then encrypted. Encryption
ensures that the message remains private even if eavesdroppers intercept it.
Message integrity
SSL uses the combination of a shared secret key and message hash functions. This
ensures that nothing changes the content of a message as it travels between client and
server.
Mutual authentication
During the initial SSL handshake, the server uses a public-key certificate to convince the
client of the server’s identity. Optionally, the client may also exchange a public-key
certificate with the server to ensure the authenticity of the client.

SSL Terms

CipherSpec
Encryption

Hash Function
+ =

CipherSuite
Authentication/Key Exchange

+
CipherSpec

=

 N

 O

 T

 E

 S

SSL Terms - Notes
When we set up an SSL session, we can specify what encryption algorithm we wish to
use. We can also specify what hash function to use to generate the message digest, or
MAC (message authentication code). This combination is called the CipherSpec.
An SSL session also needs to know what algorithm to use for authentication and key
exchange. In the current implementation of SSL that we will be using, the only option for
this is RSA.
The combination of a authentication/key exchange algorithm and the CipherSpec is called
a CipherSuite.

CipherSpecs
Encryption

Block Cipher
RC2
DES
Triple DES
AES

Stream Cipher
RC4

Hash Function
SHA
MD5

CipherSpec
NULL_MD5
NULL_SHA
RC4_MD5_EXPORT
RC4_MD5_US
RC4_SHA_US
RC2_MD5_EXPORT
DES_SHA_EXPORT
RC4_56_SHA_EXPORT1024
DES_SHA_EXPORT1024
TRIPLE_DES_SHA_US
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA

 N

 O

 T

 E

 S

CipherSpecs - Notes
RC2, from RSA Data Security Inc. This is a block cipher algorithm (that is, it encrypts the
data by blocks, 8-byte long) with a key length of 40 bits, 64 bits and 128 bits.
RC4, from RSA Data Security Inc. This is a stream cipher algorithm (that is, this algorithm
operates on each byte of data, as opposed to a block of bytes) with a key length of 40
bits, 64 bits and 128 bits.
DES, the old US Data Encryption Standard. This is a block cipher algorithm, with 8-byte
long blocks and a key length of 56 bits.
Triple DES is a variation of DES, with a key length of 168 bits
In order fastest to slowest they are: RC4, DES, RC2, TripleDES.
AES, Advanced Encryption Standard, the new US standard. This is a block cipher
algorithm, with 16-byte long blocks. Key lengths include 128 and 256 bits.
There are two choices of hash function that can be used in the provided selection of
CipherSpecs. These are SHA and MD5. SHA stands for Secure Hash Algorithm and MD5
stands for Message Digest (version) 5. The choice between MD5 and SHA-1 is a trade off
between security and performance. The SHA algorithm produces a 160-bit output and the
MD5 algorithm only a 128-bit output. This is compared with the fact that the MD5 algorithm
is much faster in calculating the message digest.

Combining these techniques
SSL Handshake

Negotiate level of SSL being used
Exchange random numbers that are used to build one-time keys
Negotiate cryptographic algorithms
Authenticate parties

SSL Handshake
Hi from
Alice

Alice Bob

The 'Client Hello'
Alice sends Bob some random text
Also sends what CipherSpecs and compression methods she can
use
Alice is considered the client since she started the handshake

SSL Handshake
Hi from
Alice

Alice Bob

The 'Server Hello'
Bob sends Alice some random text
Bob chooses the CipherSpec be used, from Alice's list

Hi from Bob
+ Bob's Cert

+ Cert Request

The Server Certificate
The Client Certificate Request

Bob's Digital
Certificate

CA Sig

SSL Handshake
Hi from
Alice

Alice Bob

Verify Server Certificate
Check Validity Period
Decrypt using CA's Public Key - verifies that CA is trusted
Check Domain Name and/or Distinguished Name

Hi from Bob
+ Bob's Cert

+ Cert Request

It's Bob !

CA
Public

Also receives Bob's Public Key

B
Public

Bob's Digital
Certificate

CA Sig

SSL Handshake
Hi from
Alice

Alice Bob

Client Key Exchange
Alice sends Bob the Secret Key to use
This is encrypted with Bob's Public Key

Hi from Bob
+ Bob's Cert

+ Cert Request

It's Bob !

Also sends her certificate

Secret Key
+ Alice's Cert

B
Public

Alice's Digital
Certificate

CA Sig

SSL Handshake
Hi from
Alice

Alice Bob

Verify Client Certificate
Decrypt using CA's public Key

Hi from Bob
+ Bob's Cert

+ Cert Request

It's Bob ! Secret Key
+ Alice's Cert

B
Public

It's Alice !

CA
Public

Alice's Digital
Certificate

CA Sig

SSL Handshake
Hi from
Alice

Alice BobHi from Bob
+ Bob's Cert

+ Cert Request

It's Bob ! Secret Key
+ Alice's Cert

B
Public

It's Alice !
Private messages

using
Secret Key

Send Information using agreed Secret Key
Randomly generated 1-time key

This is now a 'secure line'

Certificate Revocation
What happens if a Certificate is no longer trusted?

Alice's Digital
Certificate

CA Sig

Valid From 01/04/2002
Valid To 01/10/2002

Certification Authority revokes it on a
Certificate Revocation List (CRL)

C.R.L.
Alice

 N

 O

 T

 E

 S

Certificate Revocation - Notes
A digital certificate has two dates associated with it. It has a date from which it is valid and
it has a date after which it is invalid, an expiry date. What happens in the circumstance
where a certificate has been issued and before its expiry date is reached, its status is
considered to be no longer trusted?
A Certification Authority can revoke a certificate which is no longer trusted by publishing it
in a Certificate Revocation List (CRL). When a certificate is received it can be checked
against this list to ensure that it has not been revoked.

Benefits of SSL
Provides a protocol for the function we need

Encryption
Message Integrity Checking
Authentication

Supports a range of cryptographic algorithms
Uses Public/Private Keys

No key distribution problem

Widely accepted in the Internet community
Subjected to significant testing by the hacker community

 N

 O

 T

 E

 S

Benefits of SSL - Notes
The Secure Sockets Layer (SSL) provides authentication, message integrity checking and
data encryption for messages sent across the Internet. It has become the de facto
standard for Internet security and is widely available on different operating systems.
As we have already seen, it supports a wide range of cryptographic algorithms and makes
use of public/private keys for authentication which removes the need for an online key
distribution center.

SSL functions and WebSphere MQ
Supported

SSL V3.0
Choice to authenticate client
Certificate Revocation Lists on LDAP servers

Not Supported
List of CipherSpecs, only one must be provided
SSL session reuse

 N

 O

 T

 E

 S

SSL functions and WebSphere MQ - Notes
WebSphere MQ will be using SSL V3.0. SSL V3.0 was introduced in 1996; lower levels of
SSL are no longer widely used.
On the SSL handshake an optional feature is to authenticate the client certificate as well
as the server certificate. WebSphere MQ offers this choice.
The CRL function of SSL will be supported in WebSphere MQ via LDAP servers.

SSL can allow lots of CipherSpecs to be passed by the client on the SSL handshake and
the server will choose one that it supports. WebSphere MQ will impose the restriction that
only one CipherSpec can be supplied on the channel definition which must match at both
ends.
SSL can allow its sessions to be reused. This could be useful for short lived web queries.
However, since WebSphere MQ channels are likely to be longer running, we will not be
using this feature of SSL.

WebSphere MQ Configuration

WebSphere MQ Configuration Tasks
Associating a certificate with a queue manager
Associating a certificate with an WebSphere MQ client
Allowing access to Certificate Revocation Lists (CRLs)
Specifying cryptographic hardware (some platforms)
Specifying SSL tasks (z/OS)
New channel attributes

Specifying CipherSpec
Specifying permitted partners
Specifying that the partner must provide a certificate

Queue Manager's Key Repository
QM's Digital

Certificate

CA Sig

SSLKEYR

Queue Manager's own Digital
Certificate

ibmWebSphereMQ<QMgr Name>
(mixed case) label on z/OS
ibmwebspheremq<qmgr name>
(lower case) label on UNIX and OS/400
Selected from a GUI on Windows

Digital Certificates from various
Certification Authorities

On z/OS

ALTER QMGR SSLKEYR(CSQ1RING)
On Unix, Windows, OS/400

ALTER QMGR SSLKEYR('var/mqm/qmgrs/QM1/ssl/key')

 N

 O

 T

 E

 S

Queue Manager's Key Repository - Notes
A digital certificate contains the identity of the owner of that certificate. Each WebSphere
MQ queue manager has its own certificate. On all platforms this certificate is stored in a
key repository using your digital certificate management tool, e.g. in a RACF (z/OS) or
iKeyMan (UNIX) .
On z/OS, the required certificate in the key repository is specified with the mixed-case
label ibmWebSphereMQ<QMgr Name>. On UNIX and OS/400, the required certificate in
the key repository is specified with the lower-case label ibmwebspheremq<qmgr name> .
Note that the certificate label is also sometimes referred to as its "friendly name".
Selection on Windows is achieved using a GUI to assign the certificate to the queue
manager.
The key repository generally also contains a number of signed digital certificates from
various Certification Authorities which allows it to verify certificates it receives from its
partner at the remote end of the connection.
The key repository is specified on the WebSphere MQ QMGR object using the ALTER
QMGR command. On z/OS this is the name of the keyring object in the External Security
Manager (ESM), and on the distributed platforms this is the path and the stem of the
filename for the key database file or certificate store.

WebSphere MQ Client's Key Repository
Client's own Digital Certificate

ibmwebspheremq<logon userid>
(lower case) label on UNIX clients
Selected from a list on Windows

Digital Certificates from various
Certification Authorities

Specify
Environment variable:

export MQSSLKEYR=var/mqm/ssl/key
MQCONNX

SSLKeyRepository

ID1's Digital Certificate

CA Sig

MQSSLKEYRID2's Digital
Certificate

CA Sig

 N

 O

 T

 E

 S

WebSphere MQ Client's Certificate
Generally each user of the WebSphere MQ client has a separate key repository file, with
access restricted to that user.
This key repository file is accessed using the environment variable MQSSLKEYR, or the
MQCONNX SSLKeyRepository parameter.
A particular personal certificate within that file is selected for use on the client's SSL
channels.
 - UNIX clients use the certificate labeled with ibmwebspheremq followed by the logon
userid, wrapped to lower case.
 - Windows clients use a certificate selected from a list using a numeric handle.
The key repository generally also contains a number of signed digital certificates from
various Certification Authorities which allows it to be used to verify certificates it receives
from its partner at the remote end of the connection.

Queue Manager: Access to Certificate Revocation Lists

C.R.L.
Alice

LDAP Server

LDAP Conname
LDAP UserName
LDAP Password

Define AUTHINFO objects

DEFINE AUTHINFO(LDAP1)
AUTHTYPE(CRLLDAP)
CONNAME(...)
LDAPUSER(...)
LDAPPWD(...)

Put these AUTHINFO objects into a namelist

DEFINE NL(LDAPNL) NAMES(LDAP1, LDAP2, ...)
Associate namelist with QMGR

ALTER QMGR SSLCRLNL(LDAPNL)

 N

 O

 T

 E

 S

Queue Manager: Allow Access to CRLs - Notes
Certificate Revocation Lists (CRLs) can be stored in and accessed from Lightweight
Directory Access Protocol (LDAP) servers. A few parameters must be specified to be able
to access an LDAP server containing CRLs.
These parameters are the DNS name or IP address of the LDAP Server with an optional
TCP/IP port number; also optionally the Distinguished Name of the entry that is binding to
the directory and the password associated with the Distinguished Name. The
Distinguished name used here is in the same format as has been discussed earlier in this
presentation. Note that LDAP CRL servers are generally defined to be publicly readable.
These parameters are defined on a new type of queue manager object, an AUTHINFO
object. Several of these objects may be needed to ensure redundancy so that, for
example, if the first LDAP server connected to is down, another can be connected to that
will be able to supply the same information. On the distributed platforms up to ten of these
AUTHINFO objects can be supplied for CRL checking. On z/OS there can currently be only
one.
The list of AUTHINFO objects are named in a namelist and this namelist is specified on the
SSLCRLNL qmgr attribute using the ALTER QMGR command.

The above mechanism for accessing LDAP CRLs is not available on OS/400. On OS/400,
LDAP CRLs are accessed using Digital Certificate Manager (DCM); details are provided in
the "SSL for iSeries" presentation.

WebSphere MQ client: Certificate Revocation Lists
Record in the client channel definition table

Definitions which were current on the queue manager when the table was
copied off

Also on MQCONNX
Also, on Windows, can specify in the Active Directory

 N

 O

 T

 E

 S

WebSphere MQ client: Allow Access to CRLs - Notes
When the channel runs the client channel definition table CRL information does not have to
match the definitions current on the queue manager system at that stage.

MQCONNX provides a new structure, MQAIR (MQ auth info records), to allow LDAP CRL
information to be specified.

LDAP CRL records are created in the Active Directory using setmqcrl, a command-line
queue manager command which is only supported on Windows. Websphere MQ clients
which have access to the Active Directory read these records.
Active Directory support is only integral on Windows 2000 and above. Windows NT can
use the Active Directory if the Microsoft Active Directory client extensions are applied.

CryptoGraphic Hardware on the UNIX platforms
Parameters

are required by the SSL support.
required vary according to hardware used
only apply to UNIX platforms

Specify

ALTER QMGR SSLCRYP(<string>)
<string>: hardware involved + SSL support parameters

On MQ client:
Environment variable

SET MQSSLCRYP=<string>
MQCONNX

SSLCryptoHardware

 N

 O

 T

 E

 S

CryptoGraphic Hardware on the UNIX platforms: Notes
SSLCryptoHardware is in the new MQCONNX structure, MQSCO -- SSL Configuration
Options.

On other queue manager platforms the crypto-hardware is either configured automatically
by the SSL software or is configured by the systems administrator independently of
WebSphere MQ

SSL Tasks
MVS Tasks

To run SSL handshake and encryption calls
At least 2 required to run any SSL channels

On z/OS

ALTER QMGR SSLTASKS(8)

 N

 O

 T

 E

 S

SSL Tasks - Notes
Server Tasks, similar to the adapter tasks already in the Channel Initiator address space,
are required to run the SSL Handshake on z/OS. The number of these tasks started is
specified using ALTER QMGR SSLTASKS. If there are zero of these tasks then no SSL
channels will be able to start.

SSLCIPH
Only mandatory parameter on an SSL channel

Without it channel is assumed not to be using SSL

Specify the CipherSpec to be used
Both ends of the channel must specify the same CipherSpec

From a list of human-readable strings
e.g. NULL_MD5
 RC4_MD5_US

z/OS, Windows, OS/400: also SSL API numeric values
Allow support of new CipherSpecs without updates to MQ Code

SSLCIPH(RC4_MD5_US)
or
SSLCIPH(04)

SSLPEER
Specify the partner's Distinguished Name
Can use wildcards
Multiple Organisational Unit (OU)

Must be matched in order

SSLPEER('CN="Morag Hughson", O=IBM')

or

SSLPEER('OU=WebSphere*, O=IBM')

SSLCAUTH

SSLCAUTH(REQUIRED)

or

SSLCAUTH(OPTIONAL)

Client Authentication
Request whether the client end is required to provide a certificate for
authentication

N.B. Client refers to SSL Client, i.e. initiating end of session

 N

 O

 T

 E

 S

New Channel Attributes - Notes
There are three new channel attributes that can be used when setting up SSL on your
TCP/IP channels.

SSLCIPH
This is the channel parameter that you use to specify the CipherSpec to be used by the channel.

The same CipherSpec must be specified at both ends of the channel for the SSL session to be
successfully established. The values used are most often the string values shown earlier in the
presentation which are a human-readable string combining the encryption algorithm and the hash function
to be used. The corresponding numeric values for the O/S SSL API can also be used on z/OS, Windows
and OS/400, thus allowing new CipherSpecs to be supported without updates to WebSphere MQ code.
Different types of input can be successfully used on the two ends of a channel as long as they specify the
same CipherSpec. O/S API values are not relevant on UNIX as the UNIX SSL support is part of
Websphere MQ.

SSLPEER
This parameter is used to check against the Distinguished Name from the partner's certificate.

This field can have wildcards to allow generic matching. If the field is left blank or is not present then no
checking is done against the partner's Distinguished Name within the WebSphere MQ code.

SSLCAUTH
The end of the channel which initiates the SSL connection is considered by SSL to be the client.

The client always authenticates the server's certificate, but may not necessarily send a certificate to the
server to be authenticated. This parameter is used on the SSL server end of the connection to say
whether we expect a certificate for authentication from the SSL client, or whether only the server end will
have its certificate authenticated. This may be useful for WebSphere MQ client connection, or for
lightweight queue managers, or indeed for any initiating partner where authentication is not deemed
necessary. This parameter can have the value OPTIONAL or REQUIRED. The default is REQUIRED.

Security Administration Tasks
Creating certificates and Certificate Requests

Contains a Distinguished Name
Different tools on various platforms

Storing Certificates & Public Keys and Private Keys
Keyrings in RACF, ACF2 or TopSecret on z/OS
Key database files on UNIX platforms and OS/400
Certificate Stores on Windows

private keys are stored in the Registry on Windows

Managing certificates cross platform
Binary, must be transfered in binary

DER, CER, BER encodings, e.g.PKCS #7 DER encoded X.509 certificate
PKCS #12 DER encoded X.509 certificate (password protected). PKCS #12 files
contain a personal certificate and, optionally, its private key and CA
certificate(s) for its signing CA(s)

Text
must be transfered with text conversion, e.g. ACSII -> EBCDIC
Privacy Enhanced Mail (PEM) encoded X.509 certificate
Base64 encoded certificate

 N

 O

 T

 E

 S

Security Administration Tasks - Notes
Once created, digital certificates are stored in a key repository. These key repositories
are different on the different plaforms. They are:

in the External Security Manager's (ESM's) database on z/OS, e.g. in RACF, and are
connected to key rings

in a key database file on the UNIX platforms and OS/400
in a certificate store on Windows platforms

Certification Authority certificates are also stored in your key repository so they can be
used to validate certificates received from the partner system at the remote end of the
connection.
Certificates can be created on the system, or they can come from outside the system and
need to be imported onto the system. There are several standard formats that these can
be in. Some of these formats are binary formats and must be transported in their exact
binary format. In contrast, text formats must be transported as text and if transported
between an ASCII and EBCDIC system, the ASCII to EBCDIC translation must be
performed.

Creating Certificates
Certificates Contain the Distinguished Name

CN="Morag Hughson" L=Hursley O=IBM OU="WebSphere MQ Development"
C=England

Create internal test certificates,
Using RACF panels or RACDCERT commands on z/OS
Using iKeyMan GUI tool on Unix platforms
Using Microsoft MAKECERT tool on Windows
Using Digital Certificate Manager (DCM) on OS/400

Generate a certificate request
This request is written to a file/data set
Send it to the Certification Authority; this may be via their website
Receive your signed certificate from the CA

Import Certificate into repository
labelled appropriately (z/OS, UNIX and OS/400)

'ibmWebSphereMQ<qmgr-name>' (z/OS)
'ibmwebspheremq<lower-case-qmgr-name>' (UNIX and OS/400)

QM's Digital
Certificate

CA Sig

OR

 N

 O

 T

 E

 S

Creating Certificates - Notes
A digital certificate can be created on your own system and self-signed or signed by your
site's Certificate Authority (this may be useful for internal use certificate or for testing
purposes).
If you wish to communicate with an external entity, however, you may need to get a
certificate signed by a Certification Authority. To do this you generate a certificate
request, or make a request based on an existing certificate in your repository, and send it
to the CA. Once you receive a signed certificate you import it back into your repository
and proceed to use it.
The certificates are associated with individual queue managers using a label based on the
name of the queue manager.

Security Problems Solutions

hhhhhhhh
Hash

Function

Plaintext

Hash Function

Symmetric Key
Cryptography

CRL checking
C.R.L.
Alice

Using WebSphere MQ

SSLCIPH(RC4_MD5_US)

SSLKEYR(QM1KEYRING)
SSLPEER('O=IBM')
SSLCAUTH(REQUIRED)

SSLCRLNL(LDAPNL)

A
Private

A
Public

Asymmetric Keys

Alice's Digital
Certificate

CA Sig
Digital Certificates

Eavesdropping

Tampering

Impersonation

 N

 O

 T

 E

 S

Security Solutions with WebSphere MQ - Notes
In this presentation we have talked about three main security problems, eavesdropping,
tampering and impersonation.
We have shown the techniques that can be used to solve these problems. For
eavesdropping, we have symmetric key cryptography; for tampering we have the hash
function; and for impersonation we have digital certificates, asymmetric keys and
certificate revocation lists.
We have shown how WebSphere MQ makes use of these techniques to provide these
solutions to these security problems. One can specify which symmetric key cryptography
algorithm and which hash function to use by providing WebSphere MQ with a CipherSpec.
Digital Certificates and Public Keys are found in a key repository which can be specified to
WebSphere MQ. We can also check that we are talking to the partner we expect to be
talking to and can choose to authenticate both ends of the connection or only the SSL
Server end of the connection. Also we can make use of certificate revocation lists.

