o=
L
-5
<
o
(1%
=
=
=

COMPUWARE.

Rapid problem resolution for complex
WebSphere MQ applications

Introduction

At many organizations, WebSphere MQ is the glue that connects
mission-critical applications and drives key business initiatives.
Despite this importance and high visibility, when problems occur
in MQ-related application programs, the resolution process often
involves an ad-hoc combination of end-user input, jerry-rigged

system tools, on-the-fly debugging code and intuition.

This paper offers a structured approach for resolving MQ application
problems. The emphasis here is to use application tools to resolve
application problems. We walk through an MQ-related problem, and
using the Compuware product suite, show how one might build an

organized process to rapidly detect, understand and correct problems.

Problem resolution involves three major objectives:

» Awareness. Make the problem-solvers aware of a problem

as quickly as possible.

» Characterization. Provide the necessary background information

so the problem-solvers can confidently understand the problem.

7 Resolution. Leverage background information to correct the

problem—quickly and accurately.

Sample application

Our application, as shown in Figure 1, is a fairly typical MQ-based
system. A request comes into a mid-tier server, in this case a Windows
server, from the Internet or an intranet. The mid-tier server converses
with mainframe applications via MQ messages to build the desired
response. The response is then returned to the requester. In this case,

the mid-tier server is running MQ client to the mainframe.

Client N-Tier Back-end
Qluery Server Server
Fequest 1
Eply 1
Fequest 2
By 2
Fequests
Beply 2
Fequest 4
By 4
Answer

Figure 1. Sample application

COMPUWARE.f
p 4

Awareness: Real-time notification when a problem occurs

Web based transaction failure - 06/07/2005 12:27:34 - Message (Plain Text)

He Edt Mew Insert Format Took Actions Help

| CanRoply | ClRepty o8l | pForward | 0 B ¥ B3 X e @ -4 @]

L OX

i
i

i
|

U lALB L U s

From: FaultManager
i Jim.Lighert@compuware.com
(EE:

Subject: Wweb based fransaction failure - 06/07/2005 12:27:34

Sent: Tue 6/7/2005 12:28 FM

A Web based Transaction iz failing.

on 06/07/2005 at 1Z:27:34

running Windows XP(5.01.2a00)

Frobable cause was an MQGET

program pdaaggr.exe ("D:\TechnologyiWebServeri\pdaaggr.exe")
recorded a failure on machine SEA101341N01 (172.22.134.64)

returning an unexpected 2033 on queus HO1AC4S50.FX.SAMPLE.QUEUEZ

Figure 2. Real-time problem notification via e-mail

Often the most time-consuming step in the critical path of problem
resolution is for the appropriate personnel to become aware that

a problem even exists. This is particularly true as mainframe data
extends out into the distributed world; often the battle-tested
mainframe mechanisms for problem notification fall short in

these wider environments. This can be exacerbated by symptom
uncertainty. What symptom is presented to the end user when

problems arise?
2 If a program upstream abends, what does the end user experience!?

2» If a program upstream fails, is the end-user symptom the same

or different?

2 Is the onus on the end user to make IS aware of failing

applications?

2 If so, does the error present itself in such a way that the end user

would be likely to report the problem?

» Are the end users fellow employees or customers? Would a

customer report a problem?

The answers to these questions are likely to be vague; even the
responsible programmer may be unsure as to the personality of their
programs when problems occur. The preferred solution would be a
consistent notification process that removes the end user from this

loop. This is the first benefit that the Compuware tool set can bring

to this problem resolution process: the ability to generate real-time
notification (via e-mail, pager, help ticket) should a problem occur.
This notification can be initiated via a program failure (such as a gpf
or data exception) or can be initiated programmatically when the
program detects the problem (such as a negative SQLCODE during

a SQL call or, as in this case, an unexpected MQ call failure).

A closer look reveals other benefits to this approach: real-time
notification; the e-mail was generated at 12:28 and reports a
problem that occurred at 12:27:34. Even if the end users were apt
to report a problem, they could never achieve this level of early
response. Secondly, the e-mail can be tailored to include some early
characterization information; in our case, the server where the error
occurred (SEA101341N01), the name and path to the offending
program, and supporting information indicating the error was
related to an unexpected 2033 returned against queue HO1 AC450.
FX.SAMPLE.QUEUE2. Compuware Fault Manager provides a
sophisticated real-time notification process without necessitating any

significant in-house-written debug support routines.

Tip #1. Use Abend-AID’s Fault Manager to provide real-time
problem notification—and take the end user out of the loop.

Characterization: Early MQ background information

a Abend-AID for Websphere MQ 2.2 - Microsoft Internet Explorer provided by Compuware Corporation

CProgram Files\Compuware AAMO

Data Files
| ByHost | ByProgram |
o [ATL-APP522
o [BOS-AFPPSSH1
o [BOS-SERVOO
o [CHI-SERVDR
e [DTW-SERVO1
¢ [SEAAPPS2T
o [AAMOVETestForMacCiient
¢ = SEA1D1341M01
= [AAMOVETesiFarMQClient
o] AAMOVETestForMQServe
o (=) pdaaggr
o 0] SEAAPPS11

= ™ | address & C \Program Flles\CompLiware\AAMG Wiewer \AAMQViewer html

Last WebSphere MQ Call Information
The last call that was issued by the_application prior to the fault or snap was an MQGET.

The parameters that were on the

Description / Interpretation (if applicable)
s f

Hconn | Connection handla

HObj 000000002 Object Handle

MsgDesc 0X008F 0090 Message descriptor _) -

GetMsgOpts (0XX008F010D4 Options that control the action of MQGET

[Bufrer 0X00D8F021C Area to contain the message data

DatalLength |00000060 Length in bytes of the message: 96 DECIMAL

CompCode \ Completion Code: MQCC_FAILED

Reason [[2033) Reason qualifying CompCode: MQRC_NO_MSG_AVAILABLE
N

WebSphere MQ Reason Code Text
2033 - MORC_NO_MSG_AVAILABLE
Expilanation:

Mo message available

While performing an MQGET, either no message was found on the gueue satisfying the selection criteria or the
end of the queue has been reached while performing a browse. This may occur on an MQGET request. The
selection criteria is specified in the Msgld and Correlld fields of the MQMD structure and in the Options and
MatchOptions fields of the MQGMO structure. Either the MQGMO_WWAIT option was not specified or the time
interval specified in the Waitinterval field of the MQGMO structure expired before an appropriate message was

located
af] 11 vl i€

el My Computer

Figure 3. Early MQ detail information

Once we become aware that a problem exists, the next step is to
better understand the problem. Because our sample problem involves
MQ, Compuware Abend-AID for WebSphere MQ (for Windows or
mainframe) can also provide a detailed look into the last MQ call
and the MQ environment at the time of the problem. Here we see
the completely rebuilt MQGET associated with the last MQQ call
(the returned 2033)—including some suggestions on how to correct
the problem. Hyperlinked parms indicate more information is
available; for instance, clicking on the MsgDesc will show the
completely formatted MQ message descriptor; clicking on the Buffer
would show the last retrieved message (had this MQGET succeeded).

Again, this information is provided without the need for any
extensive in-house modifications. And it is not tied to a MQ failure
but merely the presence or absence of MQQ when the diagnostic

information was generated (either via a program fault or by calling a

provided API). In many cases, this will be enough detail, captured at
the point of first failure, to allow the programmer to understand and

address the root cause and resolve the problem.

The objective here is rapid problem resolution; to accumulate the
maximum amount of information at the point of failure and present
it in the most meaningful way—and quickly close the problem

resolution circle.

Based on information we have gathered so far, let’s review what we

currently know about our sample application problem.

Tip #2. Use Abend-AID for WebSphere MQ to provide
and isolate the MQ detail from the program—allowing
the programmer to quickly identify or eliminate MQ as

a suspect during problem resolution.

Client
CILEy

Pdaaggr.eze

N-tier Back-end
Server Sarvar
Request {
Eply
Fegquest 2
ol 2
Regquest 3
REply 3
Regquest 4
Eply 4

Figure 4. Sample application problem status after notification and early classification

At this point, we know several things about our application:
2 It occasionally fails.

» The failure is reflected in program pdaaggr.exe running on the

Windows server.

7 The problem seems to be related to an unexpected 2033
(Message not found) on an MQGET.

And there are also several things we do not know about the problem:

» What is the end-user symptom? (“Page Not Found”?

“Please try again later”? Incorrect or stale output?)

» How frequently is the application failing?
» What is the scenario that leads to the 20337

While in some situations our current characterization information
might be enough to resolve the problem, in this case, further
research is needed. That is another byproduct of this structured,
application-driven, problem-resolution approach: to create a clear

next step even as the problem grows more complex.

Here the next objective on our problem-resolution critical path is to
better understand the message flow between the mid-tier server and
the back-end server. Understanding the message flow will help us to

better pinpoint the 2033.

Characterization: Record and analyze MQ message flow

Figure 5. Record MQ message flow on the queue in question

The question “Where is my message!” is at the crux of many MQ-
related problems. Here we know the application that was waiting
for the message, the related queue manager and queue, and the
associated error. What we don’t know is the event or sequence of
events that caused the error. Since our message was not found,

where did it go?

Compuware QACenter for WebSphere MQ can accurately answer that
exact question. We can record the message flow in and out of a Queue
Manager for all queues or down to one specific queue. As shown in
Figure 5, we are activating the record function for the queue manager
MMQOM and concentrating on our “queue of interest,” HO1AC450.
FX.SAMPLE.QUEUE2—the queue that received the 2033 that
started the problem. We can now leave this low-overhead recording
active until the problem reoccurs, at which point we can analyze the
traffic and possibly identify the cause of the 2033.

Tip #3. Use QACenter for WebSphere MQ to record MQ
message flow between, among and through MQ queues.

! Fault Manager Management Reporting - Microsoft Internet Explorer provided by Compuware Corporation

31] hittp /f5aa 101 34 1nd 1 fmweebaite fdocs Andesx.html

| e || @ of1 »

: Message Workfilow Detail =

n| Mo

compuware §

Wednesday, June 15, 2005 11:22.004aM

30303031
0.596852

1.170384
1213714
1.258085

30303032
1374412

1.813559
1819573
1.830065

30303033
2015850

2.258415
22666872
22765986

30303034
2363090

2523244
2.5350987
2876909

TR 4
£] Appiet com compuware, cwal, sim.cwafsim started

SEA1D1341NDY
CwWot
CWoI
SEATDIZ4I1NDT

SEAIDI341NDY
W
cwoi

SEAID1341NDY

SEATD1341NDY
CWo1
W1
SEAID341NOY

SEAID1341NDT
cwiol
SEAID01341NDT
a1

FPUT-REQUEST
GET-REQUEST
PUT-REPLY
GET-REPLY

PUT-REQUEST
GET-REQUEST
PUT-REPLY
GET-REPLY

PUT-REQUEST
GET-REQUEST
PUT-REPLY
GET-REPLY

PUT-REQUEST
GET-REQUEST
GET-REPLY
PUT-REPLY

o o oo o o oo

o 0o o o

2033

& Loca Inranst

Figure 6. Recorded MQ message flow on the queue in question

Figure 6 shows the results of our MQQ message flow recording.

We have isolated the message flow associated with the 2033

and presented the messages in chronological order. These four
messages correlate with the conversation as shown in Figure 1, with
SEA101341NO01 as our N-tier server and CWO01 as our back-end

mainframe server.

We can see the first three messages work perfectly; SEA101341N01
puts the request, while CWO01 gets the request, processes it and puts
the reply. Finally SEA101341NO01 gets the reply. That sequence

is interrupted with the fourth message. The request goes to the

mainframe but the reply comes in too late; the MQGET has already
failed before the reply is MQPUT!

So now we can add to our knowledge about our problem:

» It occasionally fails.

» The failure is in program pdaaggr.exe running on the Windows server.

» The problem seems to be related to an unexpected 2033

(Message not found) on an MQGET.

» The 2033 is not tied to a program failing or abending but rather

to a response coming in too late.

» Because the reply comes in (albeit late), when the error occurs

we can expect an orphaned message on the reply queue.

This gives us yet other avenues of research: Take a closer look at the

orphaned messages on the reply queue to understand the business

implications of our problem and take a more detailed look at the

failing MQGET.

Characterization: Browse MQ queues and messages

Figure 7. Browse MQ queues

The Compuware Xpediter/CICS File Utility allows you to browse A particularly useful feature of this browse function is to map a
queues. Figure 7 shows the selection list for the browse. One thing of message on a queue to a COBOL copybook. Because the application
note is the queue depth of 64; this implies 64 failures of our sample programmer is much more likely to be familiar with the business
application (leaving 64 orphaned messages). side of an application, this feature allows them to view the orphaned

message and get a better understanding of where it fits in the
business logic of the application and the business impact of the
problem. Figure 8 shows an example of browsing a message on a

queue and mapping it to a COBOL copybook.

Figure 8. Map MQ message to a copybook

Tip #4. Use Xpediter/CICS to browse MQ queues and view MQ
messages, including mapping the message to a copybook.

k e WebSphere MQ Get Message Options (MQGMO) Detail

Data Flos) The MQGMO structure allows the application to specify options that control how messages are removed from
(e HeSEN] By Pioaram | - queues. The structure is an input/output parameter on the MQGET call. The contents of the MOGMO structure at
e g hpdppidinic] time of fault are included below:

& =] BOS-SERVO0D

- O] SEA-APPS27
¥ =) SEAT 01341 M0

Strucid ele]

o [Structore identifier
& MMl?VBTQ:;]ForMF_;CIlQnI arikn i HF& Version Number =
bt GXOG00E04 T Gptions ihat contrel the action of MOSET
o] SEAAPPSTY Waitinterval 250 [[waitinterval. 0.25 SECONDS)
Signaii 0 N [Signal
Signal2z [&]] identifier WA, ="
ResolveQ@Name [HO1AC450 FX SAMPLE QUELIE2 |Resolved narms estination quaus

Figure 9. Get message details from the failed MQGET

If we go back and review the Get options in effect for the failed

MQGET, we can see that the MQGET had a wait interval of .25
seconds. That means the mainframe has to complete the request
within that elapsed time. The 2033 indicates that the mainframe

application is not always capable of achieving that service level.

A better solution would be to research the mainframe application
to determine why it occasionally fails to meet this response

time requirement. But, which mainframe application? For that
information we return to the message and browse the message
descriptor as shown in Figure 10. Here we can see the mainframe

One inclination might be to increase the wait time; in some cases, job of interest (the job that put the message onto the queue) is

this might be an acceptable solution. But if our problem is actually HSTJXLOA.

a creeping performance problem, the true cause and the problem i)) i i
)) A logical next step is to research that job to determine why it

would be masked and the problem would likely occur again.

occasionally is too sluggish.

------------------------ XPEDITER/CICS - HELP FACILITY --------------------CO13
SCROLL ===> CSR
PROGRAM : MODULE:

Help Module: DEUHMQMD
Commands: END (Prewv screen) CANCEL (Exit help) UP DOWN Line 37 of 49

User ID.....e:2:-:2. HSTIXLO

Accounting Token.... .OAABAS9.2.155P........
ODCCCCEF4FAEEEDO0000000000000000
E6112129B2B122700000000000000000

Application ID..
Put Appl Type...
Put Appl Name...
PUt Date........
PUt TIME..cussas
Appl Origin Data

W B O »

2
.. HSTIXLOA
. 20050909
15351249

MQAT_MVS

=
-
-
-
-
-

Figure 10. Browse Message Descriptor

Characterization: Analyze the performance of MQ application programs

Figure 11. Set up for automatically analyzing a program, should its performance degrade

Compuware AutoStrobe provides a capability to automatically One point of note is that once again this research is seamless to the
analyze a mainframe job when it exceeds its usual performance application; we have not had to implement any debugging code to
thresholds. Compuware iStrobe and Strobe for WebSphere MQ accomplish this analysis.

will then allow us to analyze the program performance exactly

at the point of the excessive elapsed time issue.

Tip #5. Use AutoStrobe, iStrobe and Strobe for WebSphere MQ
to identify and correct performance issues within your
WebSphere MQ-based applications.

e & g
Profiles | Maports | Options Help
MQ-R1110: MQSeries Activity by Queue (Expand o] Collagse all] Eimi] print] Theeshold: oy | Apply |
Wall %
Page Totdl
0.00 7.45
Queue Menager Page ol '1|
¥ MMGH 0.00 74T
T Page__Totd
¥ HOLAC450.FXREQUEST. QUELE 0.00 746 EH
) Massage sze n
| |section | prority range Smallest Largest Avarage Solo. Total Page | Totdl
PDARERZ i-1 458 488 68 9356 93.56 0,00 14T E
_l Data gme [T _ 1 il
COA COD Browse conv Wat CodlD pomt | MQicount | Golg Totdl Page Total |
YooY oYy 781 9348 0.00 746 ™0

Figure 12. Activity by MQ queue

Figure 12 identifies some critical information we've gathered concerning
the elapsed time issue within our mainframe job HSTJXLOA. CPU time
is a component of elapsed time and it appears our issue may very well

be tied to a burst of activity (notice that we’ve done 753 MQ calls) and
that a huge percentage of our CPU utilization is tied to an MQGET to
the request queue (specifically the queue HO1 AC450.FX.REQUEST.
QUEUE). This is our first indication that while the problem symptom

pointed us to the reply queue the root cause of our problem might be

more closely related to the request queue.

Even more revealing is when we display CPU utilization by module

as shown in Figure 13. The biggest consumer is an MQ module
CSQWVCOL with over 40 percent of our total CPU usage.
Compuware also provides hints as to the issue when this specific
IBM module is using a lot of CPU.

e & ISTROBE
Profiles Reports Optionsg Halp
MQ-R1110: Top CPU Consumers [Eind] [Brint] rhreshold: | o Aoty
Top ol Consumers Top EXCP Consumers|
Pssudo-section Saction Startng location Tips —TTE
O MOSRIES SYSTEM 42,88
O MQSRIES £
: 3 MgsaiEs 1843 <
O MOSREES B.76
B st 233
3 MOSHES 185
O Common 169
O MOSRES coguvicH | CSOWVCOL 1.29
O Commol LCOMMON CSOWNVEOL s an IBM Websphare MO ibrary routine that waies accounting and frace recoed 0.54
3 PDAREF2 Hans 032
¥ svc SVC 013 Ifthe CPU time 15 hagh, chieck that th flowng ae tumed of 0.4
[+ POARERZ 0.16
& Whting to recards that are nof used on & dady batis and thaf there are no atine trices
* Tracing

Figure 13. Top CPU consumers

The hint indicates that CPU utilization in this module is indicative

of high MQ subsystem trace activity.

Resolution: Correcting the problem

So now we have isolated the root cause of our problem: system-level

tracing has led to an application-level failure. Let’s take one more

look at our sample application and elaborate our findings.

Client N-tier Back-end
Query Server Server
Fequest 1
o+ Feply 1
1. Web application P 3 Traced the MQ message
was occasionally flow and saw that the b 4. Analyzed the
failing. 2033 was due to sluggish - performance of the
response from the mainframe application
2 Became aware of mainframe application. and saw a significant
problem in real-time Fequest 3 issue with MQ) system-
(without any user - lewel tracing during
interaction). Also got bursts of activity.
background information < Feply 3
unexzpected 2033 et 4
Bt . Pdarep?
P .
daaggr.exze - p—
Angwer

Figure 14. Our application problem revealed

Initial indications of this problem would have indicated that we were
deep in an MQ application-related problem. But our research, using
the Compuware application tools, has revealed the problem was tied
to the amount of MQ) system-level tracing on our mainframe. So the
problem can be resolved without any programming changes! Let’s

review what we now know about our application:

2 It occasionally fails; but we’re still unsure as to the symptom

the end-user experiences.

» The failure is reflected in program pdaaggr.exe running on the

Windows server.

7 The problem seems to be related to an unexpected 2033
(Message not found) on an MQGET.

» The 2033 is not tied to a program failing but instead to a

response coming in too late.

2 The late response is tied to a burst of MQ) activity on the mainframe

and the amount of MQ subsystem tracing on the system.

This opens up the discussion on both short- and long-term

corrections. In the short term, we can:

1. Review the MQ TRACE settings (Which ones are enabled? Is
the resulting data reported on and used every day?). While some
accounting trace data might be essential, detailed performance
data might only need to be captured for a specific performance
problem and then disabled after sufficient data has been collected

for problem-resolution purposes.

2. Adjust the wait time on the distributed program pdaaggr.

(It is currently .25 seconds.)

3. Figure 12 also reveals we are doing the data conversion on the
mainframe; it may prove less costly to do data conversion on

the other platform.

COMPUWARE.

For the long term, we might consider two possibilities:

1. This type of mainframe application (many short requests) might
be better suited for a CICS application rather than a batch

application.

2. The problem could possibly have been avoided in production
all together had we better tested bursts of activity during
development. Again, QACenter for WebSphere MQ is the
ideal product for testing and load-testing MQQ applications.

While this paper walks through a specific MQ example, it also
highlights the benefits of the Compuware MQ tool set regardless

of the MQ implementation:
7» become aware of a problem the first time the problem occurs

2 capture the last MQ call and MQ environment at the time
of the problem

2 automatically test and load MQ applications
» track MQ message flow

» reduce the CPU cost of MQQ applications.

To learn more about Compuware’s support for WebSphere MQ,
visit www.compuware.com

The primary emphasis here is the benefit received when one uses

the right tools for the job: application tools to resolve application
problems and system tools to resolve system problems. The secondary
emphasis is how this approach always provides a logical next step;
you’re no longer reduced to guessing at the problem or adding

diagnostic code to production programs.

Establishing a problem resolution process such as this allows
organizations to achieve two desirable objectives: resolve problems
rapidly and receive maximum benefit from their Compuware
investment. Strategic use of the Compuware MQ tools—
Abend-AlID for WebSphere MQ; QACenter for WebSphere MQ); the
Xpediter/CICS MQ File Utility; and Strobe for WebSphere MQ—
can help sites avoid those emergency, late-night, war-room meetings

by offering a well-constructed MQ problem resolution strategy.

Compuware products and professional services—delivering IT value

Compuware Corporation (NASDAQ: CPWR) maximizes the value IT brings to the business by helping ClOs more effectively manage

the business of IT. Compuware solutions accelerate the development, improve the quality and enhance the performance of critical

business systems while enabling ClOs to align and govern the entire IT portfolio, increasing efficiency, cost control and employee

productivity throughout the IT organization. Founded in 1973, Compuware serves the world’s leading IT organizations, including

95 percent of the Fortune 100 companies. Learn more about Compuware at www.compuware.com.

Compuware Corporation Corporate Headquarters
One Campus Martius
Detroit, Ml 48226

For regional and international office contacts, please visit our web site at www.compuware.com

COMPUWARE&:%M)
Www.compuware.com “Ees

All Compuware products and services listed within are trademarks or registered
trademarks of Compuware Corporation. Java and all Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
All other company or product names are trademarks of their respective owners.
© 2006 Compuware Corporation

