
Parsihg, Syntax Checking and
I nterpretatiolt-Pa rt One

#y Etietu*rd ?sxjia**t*

As aNvoNB wHo HAS EVER DEVELOPED A TooL, oR UTILITY PROGRAM,

knows, one of the most frustrating parts of developing code is the pro-

cessing of data that is used to drive the software, such as command

lines, or parameters that are provided via switches, checking for cor-

rect syntax, extracting the keyword value(s) and acting on the values

preiented. This process is dry, repetitive and uninteresting which' as

a result. often leads to code that is hard to maintain and buggy. Worse

yet, the notion that more time may have to be spent on

writing code to validate the syntax of the input

and to pick apart the command line into key-

words and data, versus coding the program's

main objective, is so unappetizing to some

that potentially great projects may forever

remain on the back of a napkin. And, for

those who do choose

to venture forth.
the typical solution

of choice is to copy

code from an existing pro-

gram that does something close to

follow the keyword, and the keyword value must follow right after

the equal sign.

Basically what is required is a tool, or tools, to parse the input,

check the syntax of the input and act on the keywords and/or data.

These sorts of tools are normally used in the development of compil-

ers and command interpreters and other software products, and would

be found in commercial and/or academic software development envi-

ronments. These tools are very compiex and beyond the scope of this

document. It should be noted that IBM does provide callabie func-

tions that are used in the construction of TSO command processors,

such as IKJPARS, but they are not easy to use and are restricted to the

Token ID Token Len. Token Loc.

ABCD:123

Figure 1:Token entries on a tlFO queue

OS/390 platform. But, despite the inherent complexity of these tools'

it is stil1 possible to leverage some of that technology to produce a

reasonable solution.

Ideally, a simple mechanism is needed that deconstructs the d'ata into

subcomponents, e.g. keywords and values, provides the means to vali-

date the syntax of the command line, and/or switch parameters, and to

present the extracted data to the user program. This would offer a stan-

dard approach to handling this type of data, and it wouid minimize the

creation of faulty code. In addition, the overall design and development

phases would be simplified because this type of processing would take

less time to implement.

Basically what is required is a tool,
or tools, to parse the input, check the

syntax of the input and act on the
keywords and/or data.

I have developed software that addresses these needs and I believe it
is easy to use as well. This simple mechanism consists of the fbllowing

processes: parsing, syntax checking and interpretation. I would like to

discuss each process as part of a three-part afiicle.

WHEN IT ALL BEGAN

As a neophyte, I looked forward to being able to ply the skills I

learned as a computer science major when I entered the working worid

in the summer of 1973. I worked for a major oil company and soon dis-

covered that much of what I learned would be of little, or no value'

Over time though, whenever the opportunity presented itself' I did try

to incorporate what I learned in the code I produced.

l

ff. $ changes. Never mind that the copied code

d t G probably does not support free-form text,
6 lF continuation lines and relies on very

what you need, but sti1l requires coding

changes. Never mind that the copied code

restricted coding rules, i.e. the keyword must

begin in column 2, the equal sign must immediately

26lta TechnicalSupportlF.y*tEi7*** i**#w,NaSPA,i:*rct



My second job was at a major insurance com-
pany, where I became a CICS systems program-
mer and became exposed to the online world. It
was here that I first encountered a group oftech-
nicians that created tools, appiied custom
patches to system software and dove head first
into dumps. One of my coworkers wrote a

macro that was used to extract the parameters of
a CICS transaction. It was very basic and inflex-
ible, but it was the first programming example
that piqued my interest. Needless to say, I
copied it and began to dissect it and make
changes. I do not recall the original name of the
macro, but I called my version PARSE.

Over the years, I would work on pARSE

making additional changes, tweaking it here
and there when I found spare time, or if I
found a work-related requirement that pARSE

could potentially satisfy, I would incorporate
those changes as well. But, in the end. I soon
realized that PARSE became too cumbersome
to use and was soon relegated to the tool chest.

After I 1 years and several jobs later, I had a

consulting assignment at Bellcore, the research

arm ofthe baby bell companies after the breakup
of AI&T. Unlike my prior jobs and assignments,

this was my first experience working in a high-
tech environment. One of the team members cre-
ated a prototype for a service provisioning

tigure 2: Delimiter list

system for 800 services that was based on rules;
in effect, the rules were the program. This was a
very interesting approach to a problem.

After my stint at Bellcore, I gradually took
what I learned from there and began to rethink
how to change PARSE, and started to incorpo-
rate those ideas in a new version of the soft-
ware. After a number of years, I created a new
version of the software in OS/390 assembler.
and in the C language for Windows/2000, AIX,
HP-UX and AS/400. What originally srarled
out as a single assembler macro evolved into 3
programs and a number of macros.

WHAT IS PARSING?

One perspective ofparsing is as follows:

"Parsing is the process of structur-
ing a linear representation in accor-
dance with a given grammar. The
definition has been kept abstract on
purpose, to allow as wide an inter-
pretation as possible. The "linear

representation" may be a sentence, a

computer program, a knitting pattern,

a sequence of geological strata, a piece

of music, actions in a ritual behaviour,
in short any linear sequence in which
the preceding elements in some way
resfict the next element."-parsing
Techniques, A Practical Guide by
Dick Grune and Ceriel Jacobs

From the softr.rare perspective. a parser con-
verts the linear expression, e.g. command line,
into tokens, a process that is known as lexical
scanning, and checks that the linear expression is

s) nlactically correct based on a given gramma.r.

I chose to separate parsing into two distinct
callable functions. The first, which I refer to as

the parser, is nothing more than a lexical scan-
ner. The second function is what I refer to as

syntax checking. I took this approach because
I thought lexical scanning could be useful on
its own. For example, you could take input,
convert it into tokens, and count the number of
tokens, similar to the Unix wc function.

DtLII"ITAB @DEtII'1 I"]F:GIN,
PTPOUND:NO,

PTDOUOTI:TOGGtE

+

+

l&' "fi,8ffi

lrt/'hat's
in Yorrr

Production
Library ?

ff

,$Flon'Yo t g oa

late'Ch0n ffi
ldentify Longuoge

, :,..i , :,r I : :,i: :::ri::l ::ir ::r'lr

ts Operating Systems through zlOS l.T
> IBM Enterprise COBOL through V3.4
F IBM Enterp$sq f'fn.ttrffiffi,5 r,, 

' 'i.,''1'

> And much, much more....



TOKENIZING DATA

Lexical scanning takes the input and

breaks it up'into tokens, or atomic expres-

sions, which are then stored in a data struc-

ture, such as a push down stack' The atomic

expressions could be a string of characters,

numbers or delimiters'

For example, in the sentence "The child is 8

years old.", the tokens would be: The, child, is, 8,

years; old, and . Qeiod). Typically, the blanks

are discarded and not converGd into tokens'

The approach I took is slightly different'

First, unlike a parser for a compiler which

works with a predefined set of delimiters, tr

chose to give the user the option of providing

a user-specified list of punctuation marks,

which is used to distinguish what is, or is not

to be regarded as a delimiter. Hence, if a usgr

wants to accept the pound sign (#) as a valid

character in a name, that particular punctua-

tion mark would be flagged as such in the list

of delimiters passed to the parser.

Second, the tokens are stored in a first-in,

first-out (FIFO) queue, as opposed to a push

down stack. A push down stack is needed for

a compiler (or interpreter) when it performs

expression analysis, which is beyond the

requirements of mY Parser.

Last, the user can specify when a blank is to

be converted into a token, and when it can be

ignored. This is achieved by letting the user

specify in the list of delimiters passed to the

parser, when to start/stop tokenizing blanks'

For examplq,, the user can specify that when a
'double quote is encountered' blanks will be

tokenized, and when another double quote is

encountered, blanks will not be tokenized'

As lexical scanning takes place, an entry is

created in a FIFO queue for each token (see

Figure l), where:

tr
V

Token identifier is a numeric value that

represents the type of token. For

example, ifthe expression is a string of

characters, e.g. ABCD. it might be

assigned 0, whereas if it were an equal

sign, it might be assigned 3.

Token length is the length of the loken'

Location of the token on OS/390, this

would be an actual memory address,

whereas on non-OS/390 platforms, this

would be an offset into a character string'

MODTFYING THE LIST Ol D!!!MITER:

The user has the choice of either using the

d6fault list of delimiters, or the user could

Figure 3: Non-0S/390 delimiter list example

/linclude zParse.h,,

:

main( ) {

char inbuf lLlulAXS I RINCLTN+l I ;

it i. ur.ro.il*t33lt2l =[ /i user-defjned del imjters for parse */

PTPAD,YES,

Pl NrJt I ] ;

.

p6 = parse(inbuff, userdeljm);

if (rc) { i* Erro'detected by Parser */
printf(">>) Err0r detected by Parser' rc:%d\n"' rc);.
return(ERROR);

I /* end if */
I /' end main */

I

I

i
1
:!
I
I

:

1

l

char userdelimt33lt2l: {/*User-defined delimiters for parse */

PTPAD.YES, _
PTCOI'4IVlA, Y ES ;

PIEOIJAL,YIS,
PTI PAREN, Y tS ,

PTRPAREN , Y ES,
D'I LT, Y ES ,

PTGI ,YI'S,
PTLBRACt,YLS,
PIRBRACI,YES,
PTDASH , Y tS,
PTUBAR,YES,

PTAND,YES,

PTP0UND.N0, i * could be used in file names */

PTAT,YES,
PI PLUS,YES,
PTSLAStl, Y IS,
PTPERCINI,YLS,
PTSTAR, Y iS,
PTSCOLON,YES,

P'COLON, YFS,

Pr50u0lL.Yts,
,pTD0tj0IE,T0GGLE, /*make sure blanks between double quotes are tokenized

PITILDF,YtS.
PIBAR,VES,
P TOUFS I-, Y tS ,

PTPERIOD.YES,
PTEXCLAI'4,YES,

PTBS LASH , Y ES ,

PTDOLLAR,YES,
PTRVOUOT,YES,

PTLBRACKET,YES,

PTRBRACKET, Y ES,

PTNULL):

@TOKEN I,1F:ALL

$PARSMAP@PARSE MF:DSECT

.

LA R3;PARMLST1 POINT TO PARM L]ST

SPACT 1

@PARSE MF=(E,R3)
SPACT 1

LTR R15, R15 OK ?

87 PARSE CI'4D-EXIT YES, GET OUT

PAR|,4LST1@PARSEI,4F:L,cMDLINE=STRING,c|,4DLEN:L'STRING,DELI|'4TB:DELII'4TAB
STR]NG DS CLsO iNPUT STR]NG

Figure 4: lnvoking Parser on 05/390

28 | rc Technical Support I Aprii 20S6

tigure 5: lnvoking parser on non-05/390 platfoms

www.NaSPA"{oiln



provide a customized list of delimiters. The default list of delimiters
for a given platform treats all punctuation marks as delimiters.

The following examples show a delimiter list that treats the pound
sign (#) as a character and not a delimiter. In addition. when a double
quote is first encountered, it will cause blanks to be tokenized and
when it is encountered again, the tokenization ofbtanks will cease. In
effect, the double quote acts as a toggle switch for tokenizing blanks.
It should be noted, any delimiter could be used to toggle the tok-
enization of blanks.

OS/390 delimiter list example
In this example, an assembler macro called @DELIM is coded, and

the values for the pound sign (#) and double quote are modified (see

Figure 2).

Non-OS/390 delimiter list example
In this example, a little more work is

required because an iuray declaration must be

modified, as opposed to a macro (see Figure 3).

The user must:

{ Copy the file dfltdelim.h inro the

program.

Change the atray name from dfltdelim to
userdelim. (or some other name of the

user's choosing)

Modify the settings for the pound sign
(#) and double quote.

PROGRAMMING EXAMPLES

The following examples show how to invoke
the parser for both OS/390 and non-OS/390
platforms.

lnvoking parser on OS/390

On OS/390 the parser is invoked using the
@PARSE macro (see Figure 4).

lnvoking parser on non-OS/390 platforms
On non-OS/390 platforms, the parser is

invoked by calling the function called parse

(see Figure 5).

NEXT MONTH

At this point, I have shown how the data gets

parsed and stored in a FIFO queue. The data is
now in a state that makes it easy to check if it
is syntactically correct or not. Next month I
will discuss how to setup the syntax rules and
invoke the syntax checker.

REFERENCE MATERIAL

ESA/390 Principles of Operation, 5A22-7201
HLASM VIR4 Language Reference, SC26-4940
HIASM VlR4 Programmer's Guide, SC26-4941

ss"zu , NaSPA"r+nr

ILE C.for AS/400 Programmer's Guide, SC09-2712

C: The Complete Reference, Herbert Schildt, Osborne McGraw-Hill
Introducing the UNIX SYSTEM, Henry McGilton and Rachel Morgran,

McGraw-Hill
Compiler Construction for Digital Computers, David Gries, John

Wiley and S,,rs 4t

Questions or comments? Please e-mail editor@NaSPA.com.

NaSPA member Richard Tsujimoto is an independant consultant specializing in MQSeries. ClC5,

and MVS.

t

3.

ftpalert from Williom Doto Sy$ems lets you controlwho (0n ftp files to ond from

your zseries eServer.ftpalertinstslls in minules, se(ures 0ll FTP uclivity ond, to

solisfy regulotory c0mpli0nce, incorporoles romprehensive, reol time 0udit 0nd

logging focilities for ull FTP usoge.

Eualualeftpalert today. You hove nothing to lose but your d0t0l

ftpalert

Technical Support l&prif ?*** ul29


