
Parsing, Syntax Checking and
I nterp retation - P3 rt Two

*y Rick ?sxjim*tr

Lasr rr,rowtn I otscussso How ro Do A LEXICAL scAN oF A LINEAR

expression, such as a command line, converting it into a series of
tokens based on user-specified delimiters, keywords and strings
(both numeric and alphanumeric). In addition, I also discussed how
a formal parser has two major roles: lexical scanning and syntax
checking, and why I chose to split these two processes into two sep-
arate callable functions. In this article, I will describe how to per-
form syntax checking of the linear expression after it has undergone
the lexical scan phase.

WHAT IS SYNTAX CHECKING?

One definition of syntax checking that I came across is:
'A compiler will typically perform syntax checking, which

includes type checks, scoping rule enforcement, amongst
other checks; and other processes such as static binding,
instantiation of templates, and optimizati on."

-Wikip
e dia

In the development of a compiler, these objectives seem like reason-
able requirements and, as you can surmise, entail complex coding. In
contrast, the approach I took with respect to syntax checking is much
simpler: is the linear expression syntactically coffect, or not? To deter-
mine if the syntax is correct, or not, one simply applies a grammar
against the expression. Basically, the grammar is comprised of syntax
rules that define the construct of valid expressions.

For example, the following is a common example of an assignment
statement that is found in many computer languages:

A=B

The set of syntax.rules for this expression might comprise of the fol-
lowing:

'r A and B are names of variables.

'r Variable names may consist of alphanumeric characters, the first
of which must be a letter, and the names cannot be longer than
n-characters.

v The statement must begin in a column other than l.
v The equal sign must follow the first variable name.
v Spaces may be used anywhere in the expression, e.g. 'A = B" is

identical to'A =B".

Obviously, the more complicated the expression is, the more
complicated the set of rules becomes. In a programming language,
such as C for example, an assignment expression can become very

Figure 1: token entries on a tlF0 queue

I

I

I

t

struct syntax_table { /x Table of syntax rules *l
i nt tokentype; lx token type fl aq * I
int nextrule; /* next syntax rule t0 process */
char *keyword: l* optional keyword string *l
int (*userexit)(char token[], int tokenlen, char

msg[101]);
/* optional user exit */

);

Figure 4: Template for non-05/390 syntax table

complicated by parenthesizing sub-expressions, and joining them
using a variety of operators, e.g. plus sign (+). The approach com-
piler writers take to address this issue is to store the syntax rules in
a binary tree. This allows complex expressions to be checked by
recursively traveling up and down the tree, applying the grammar
against the expression.

RULtl: iF T0KENTYPE:Tokenlsstring and VALUE:"ABCD" G0T0 RULE3
RUI 12: SYN I AXERROR

RULE3: IF T0KENTYPE:TokenlsEqual G0T0 RULE5
RULE4: SYNTAXERROR

RULE5: IF T0KENTYPE:T0kentsNurrr and VALUE:"123" G0T0 RULE/
RULE6: SYNTAXERROR

RULE/: LASTRUTE

Figure 2: set oftheoretical syntax rules

SYNTABLE @RULE TYPE:INITlAL
RULEOiO @RULE TOK_IS_DATA,NEXT:RULEO2O,STRING:ABCD

@Rt.JLE SYNTAXERR

Ri]LEO2O @RUtE TOK_1S_EOUAL,NEXT:RULIO3O
@RULt SYNTAXERR

RULEO3O @RULE TOK_IS_NUl',1,NEXT:FtUSH,STRING:123
@RULE SYNTAXIRR

FLUSH @RUtE IOK_IS_EOS,NEXT:DONE
@RUI F SYNTAXI RR

DONI @RULT LASTRULT

@RULE TYPT:FINAL

Figure 3:0S/390 syntax table

241rc Technical Support | tuIay3**S rryww.NaSPA.s*in

This method is necessary for the develop-

ment of compilers, but it would have been

overkiil in the tool I developed.

l, l lt_E_4 8 _tr!r-I+{, LU !"E : _
Instead of using binary trees for validating

the linear expression, a simpler approach
were taken, based on linear rules. similar to
a decision table.

In order to illustrate the process of using a

(syntax) table containing syntax rules for validating a linear expression,
I think it might be helpful to reshow the results of the lexical scan that
were discussed in iast month's article (see Figure 1).

As you can see, a numeric identifier is associated with each token. In
this example, the following associations are defined:

-e 0 is assigned to character strings
e' 3 is assigned to the equal sign 1=1
=s 1 is assigned to numeric strings

For illustration purposes, let us assign a name to each token identifier:

e" TokenlsString is the same as 0
er TokenlsEqual is the same as 3
q TokenlsNum is the same as 1

Hence, a theoretical set of syntax rules that could be constructed val-
idate ABCD=123 (see Figure 2).

Using the set of theoretical syntax rules, the syntax checking pro-
cessing flow is as fbllows:

E " The cunent token is compared against a token type associated
with character strings in the synta-\ table and the token's
associated value is compared against the character string'ABCD',.

?" Ifboth matches apply, point to the next token in the queue and
take the associated action, e.g. "GOTO" the specified syntax
table entry, e.g. RULE3.

3. Otherwise, go to the next row in the table, e.g. RULE2, where
the token type in the table is SYNTAXERROR; in this case, the
Iookup process ends, the retufit code is set to a value that
indicates a syntax error and control is returned to the calier.

struct syntax table synlaxtab[100J
/* rule-00 */
/* rule 01 */
l* rule-AZ * I
/* rul e 03 */
l* rule-A4 * I
/* rule 05 */
/* rule-06 i/
l* rule A7 *l
/* rul e 08 */
/* rule-09 */

: I /* User
1 STARIRULT} ,

lToklsData,
I SY NIAX IRR } ,

lTokisEqual,
{ SYNIAXERR} ,

{ToklsNum,
{SYNIAXIRRI,
{ToklstOS,
{ SYNTAXTRR} ,

{ LASTRU tE } } ;

syntax rules */

GoTo3, "ABCD"] ,

GoTo5] ,

GoTo7, "123"]
,

GoTo9] ,

Figure 5: Non-0S/390 syntax table

v.iqr,r o.+. N a S PA,** *ra Technical Support I fatey fr,**S ts 125

4. At RULE3, a test is made to see if rhe

current token is an equal sign (=) and, if
true, point to the next token in the queue

and "GOTO" RULE5.
S. Otherwise, go to the next row in the

table, e.g. RULE4, where the processing

is the same as in Step 3 above.

6" At R[ILE5, a test is made to see if the

current token is a numeric string and if
it's associated value matches "123"; if
true, "GOTO" RULE7.

7. Otherwise, go to the next row in the

table, e.g. RULE6, where the processing

is the same as in Step 3 above.

S. At RULE7, the token type in the syntax
table is LASTRIILE; a return code is set

to indicate success and control is

retuffred to the caller.

tA R3 , PA RI.4 LST 1

SPACE 1

@PARSE I.4F:(E,R3)
SPACT 1

LTR R15, R15

BNZ PARSE_CIv1D_ERR

SPACE 1

LA R3 , PARI4 LST2

LA R5, SYNTABLE
SPACF I

@SYNTXCK I.1F:(E, R3), SYNTXTB=(R5)
SPACE 1

LTR R15, Rl5
CHK_SYNIAX_EXIT

PARI',1tST1 @PARSE IV]F:L,CIlDLINE:STRING,CI.IDtEN:L,STRING,DELII,lTB:DTLIj!TAB
STRING DS CLBO INPUT STRING
PAR[,1tST2 @SYNTXCK I.4F:L

POiNT TO PARI"l t]ST

OK?

NO, CONT]NUE

POINT TO @SYNTXCK PARI'1 LIST
PO]NT TO SYNTAX TABLE

ANY ERRORS?

NO, GIT OUT

Figure 6: lnvoking syntax checker on 05/390
The use of a table containing syntax rules is

easy to implement, but it is not practical in the case where an extensive It should be noted that the concepr of user exits will be discussed in
grammar is required, e.g. a programming language. Yet, I believe this next month's article. In brief, user exits are used to provide context val-
approach is more than adequate for the development of software that idation and processing.
uses a limited grammar. e.g. a small set linear expressions, such as On OS/390, the syntax table is generated via a macro called
commands, or parameter data.

GRAMMAR

I abel condi ti on (acti on) (stri ng) (user exi t)

where:

I abel On OS/390 this is an assembler statement label, but on
other platforms this is an index value into the syntax
table. This is an optional parameter.

condjtjon This is either a token type value, which is used to

26lra Technical Support | **lagr 2S*6

@RULE, which can be embedded as part of a program, or created as a

separate CSECT. If the set of syntax rules becomes large, creating the
syntax table as a separate CSECT makes it easier to manage and mini-
mizes the impact on base register usage.

As mentioned earlier, a grammar is comprised of a set of syntax Using the tokens shown earlier for the expression ABCD=123 (see
rules. In this case, the syntax rules are linear in nature, and are stored Figure 1), the OS/390 syntax table would contain the rules as shown in
in a table. Figure 3.

The format of a syntax rule is as follows:

The maximum number of rules that
can be specified is limited to 1000 and

the first array entry is must be the
token type called STARTRULE.

1t.i'lL compare against the current token's type value, or it is The table must begin with @RULE TYPE=INITIAL and end with

I ..',,1 a special value, e.g. it denotes the end of a linear @RIILE TYPE=FINAL macro. The token type value TOK_IS_EOS is

.,. | ,: expression, or the end of a subset of rules. This is a a token value that is always the last token in the FIFO queue i,ftef. a lex-
required parameter. ical scan. It represents the end ofthe list oftokens.

(actj on) This is either a label or index value into the syntax The coding requirements are the same as any OS/390 macro: labels
table, which is "branched to" if the condition men- must begin in columnl, continuation mark must be in column 72, and
tioned above is satisfied. On OS/390 it is a label and so forth.
on non-OS/390 platforms it is an index value into an On non-OS/390 platforms, the syntax table is represented by an
array (syntax table). The pointer to the current token is array of a data type known as a structure, and the template for the array
advanced to the next token before the "branch" is is shown in Figure 4.
taken. This is an optional parameter. Again, using the tokens displayed in Figure 1 and the structure defi-

(stni ng) The string value is used as a secondary comparison nition shown above, the syntax table would have the rules as shown in
against the current token's associated value. The maxi- Figure 5.

mum string length is 100 characters. This is an The maximum number of rules that can be specified is limited to
optional parameter. 1000 and the first array entry is must be the token type catled

(user exjt) Thisistheaddressofauserroutinethatiscalledduring STARTRULE. The limitation is artificially set due to the number of
the interpretation phase. This is an optional parameter. iidefi ne entries created for the purpose of equating a variable name to

r6Jwr#,NaSPA,{5m

an afiay location. For example, GoTo5 is

equated with the number 5, or the 6th array

element (relative to zero). Hence, the GoTo

/ldefi ne values range from GoT00 to GoTo999. If
a larger array is required, the user could pro-

vide the additional /ldef i ne statements.

PROGRAMMING EXAMPLES

The following examples show how to
invoke the syntax checker for both OS/390
(see Figure 6) and non-OS/390 platforms (see

Figure 7). In addition, the examples are based

on the syntax tables discussed earlier, and the

code fragments that invoke the parser are also

included for readability's sake.

ADDITIONAL PROGRAMMING NOTES

It was mentioned earlier that in addition to
allowing free-form text, it is also possible to
process linear statements that are specified on

multiple inputs, by supporting statement con-
tinuation. How this is achieved will be dis-
cussed below.

In addition, an easy method for maintaining
syntax tables on non-OS/390 platforms will be

discussed as well.

Statement continuation
Linear expressions that span multiple

inputs is often required when the statements

have a complicated syntax that may, or may
not, involve long data values. The user can
choose any character/delimiter as the contin-
uation character, such as a plus sign. A spe-

cial token type value is provided (e.g.

C0NIRULE), which instructs the syntax
checker that the statement will be continued
and that it should record where syntax
checking is to resume when the next input
string is processed.

The user arbitrarily tests for the presence

of the character chosen for the statement
continuation character. Once a match has

been made, a rule is branched to that has the

the trade-offis added complexity to the syn-
tax rules.

Since the continuation rule uses the
"GOTO" location associated with the
<action> value for a future purpose, i.e. the

Figure 8). The purpose ofthis token type is to
provide the "GOTO" capability that was not
provided for in the C0NTRULE token type. This
special token type must follow the CONTRULE

token type.

For example, the following statements show

a command that supports two types of values

associated with the keyword MYVAR:

(where aaaa is any string

status is stored, and the next syntax rule that is

processed is the one immediately following
C0NTRULE. Hence, to provide a means for con-
trolling the process flow, a special token value
has been created which is called GOTORULE (see

MYVAR - aaaa

other than HELP)

or

MYVAR: HELP

If a plus sign

character, there

could be used:

(+) is used as a continuation

could be 2 places where it

maino
t

cha r i nbuf f l'4AXSTRI NGLEN+11 ;

r' nt to k] en ;
j nt tokl oc;

rc : parse(inbuff, userdel jm);

if (rc) { /* Ernor detected by Parser */
pritnf("))) Error detected by Parser, rc:&d\n", rc);

' return (FRROR) ;

I l* end if nl

rc : syntaxchk(jnbuff, syntdxtab, &tokloc, &toklen);

if (rc) { /* syntax error found */
printf("))) Syntax error in column %d token length: %d\n"

tokl oc + 1, tokl en) ;

J /* end if */

Figure 7: lnvoking syntax ftecker on non-05/390 platfoms

struct svntax_tabl e syntaxtabI
/* rul e-00
/* rule-01
/* rule'02
/* rul e-03
/* rul e-04
/* rul e-05
/* rule 06

/* rule-07
/* rule-08
/* rule 09

/* rule-10
/* rule-11
/x rule-12
/x rule 13

/* rule-14

l00l:{/*User*/ {STARTRULT},*/ {ToklsData,*/
{ SYNTAXERR} ,*/ {ToklsE0S,*/ {SYNTAXERR},*/ {LASTRULE},.*/ {ToklsEqual,*/ {ToklsPl us,*i { SYNTAXERR} ,*/
{ CONTRU LE,*/
{ GOTORU LE,*i {SYNTAXERR},*/ {ToklsData,*/ {ToklsData,*/ { SYNTAXERR}]

syntax rules */

GoTo06, "l'1YVAR" l

GoTo05 l ,

GoTo12] ,

GoTo09] ,

GoTo12i,
GoTo03 i ,

GoTo03, 'HELP'L
GoTo03 l ,

Figure 8: Statement continuation rules in non-0S/390 syntax table

syntbl gen -j i nfj I e -o outfi I e

where jnfile is the input source
outfjle js the output file

fi'le that contains the macro staternents
lhat contains the C arrav statement-s

Figure 9: lnvoking SYNTBtGEl'l

Linear expressions that span multiple inputs is often
required when the statements have a complicated synta<

that may, or may not, involve long data values.

special keyword C0NTRUtE, followed by the
statement where syntax checking is to
resume for next statement. Obviously, the
placement and usage of a continuation char-
acter can be as liberal as one chooses, but

wwyr.NaSPA.com Technical Support I May ISOd rl2t

are relocatable symbols that the binder Figurell:SampleoutputfilefiomSYNTBIGEN

resolves when it creates the executable. This
makes it much easier for the programmer when the syntax table needs v The pa.rameter COMMENT=". .." is only supported for non-OS/390.
to be modified' This parameter provides a way for a programmer to specify a

comment for a rule that is also generated as a comment for an

array element.

The following examples show the macro statements (see Figure 10)
that are used to define the same set of syntax rules, as in the prior exam-
ples, and the generated C arrays statements (see Figure l1).

NEXT MONTH

MYVAR +

+

aaaa

HELP

The degree of flexibility has a direct impact
on the number of syntax rules required to sup-
port that flexibility. Since the syntax for spec-
ifying the rules on both OS/390 and
non-OSi390 are nearly identical, an example
of the syntax table for the non-OS/390 plat-
form should suffice.

MAINTAINING SYNTAX TABLES FOR
NON-OS/390 PLATFORMS

The main difference between syntax tables
on OS/390 and non-OS/390 platforms is how
they are created. Under OS/390, assembler
macros are used, as opposed to an array.
Macros allow the user to use labels, which

The main difference between syntix
tables on OS/390 and non-Os/390
platforms is how they are created.

In contrast, elements of an array are referenced via absolute numeric
values. For example, the llth array element (relative to zero) is refer-
enced by specifying the number 10 in the array name, e.g. table[IO].
Hence, any change to the array, such as inserting new rules, affects all
other rules that reference the old l lth element, e.g. "GoTol l',, as well
other array elements that are displaced. This makes the task of main-
taining syntax tables on non-OS/390 environments very cumbersome
and, worse, prole to error.

To circumvent this obstacle, I created a C program called SyNTBLGEN

(see Figure 9) that converts a source file into a file that contains the
array statements, which has the user-specified syntax rules. The source
file is comprised of statements, which are (almost) identical in structure
to the macros used on OS/390 platforms. As a result, the programmer
does not have to worry about maintaining the relationship between
aray element numbers and'!GoTo" statements.

The differences between the macro language used on OS/390 and
non-OS/390 are as follows:

.r The first rule must be @RULE TypE=tNITIAL without any other
parameters.

.r OS/390-specific token types are not supported, e.g. T0K_tS_NOI
(lhe not sign).

28 | rc Technical Support I May ?$06

Figure l0: Sample input file for SYilIBLGEN

struct syntax_table syntaxtabtl4AX_RULESI : 1 /*
/* rule-0000 */ {STARTRULE},
/* rule-0001 */ {ToklsData, GoTo3, 't4yVAR" }, /*
/* rule 0002 *l {SYNIAXERR},
/* rule 0003 */ {ToklsEqual,GoTo5},
/* rul e-0004 */ {SYNTAXERR} ,

/* rule 0005 */ {ToklsNum, GoTo7, "123"},
/* rule-0006 */ {SYNTAXTRR}, /*
/* rule-0007 */ {ToklsE0S, GoTog},
/* rul e 0008 */ { SYNTAXERR} ,

/* rul e-0009 */ I LASTRULE) ,

]; /* end of syntax table */

Syntax rules */

Start: process I'IYVAR */

End: process l'lYVAR */

We have now shown how to parse a linear expression, by performing
both a lexical scan and checking the syntax of the expression. The last
task that needs to be discussed is how to extract the data from the lin-
ear expression, which is the ultimate objective of this process. This
topic will be discussed in next month's issue.

REFERENCE MATERIAL

ESA/390 Principles of Operation, 5A22-7201
HI-4,5M VlR4 l-anguage Reference, SC26-4940
HLASM VlR4 Programmer's Guide, SC26-494i
ILE C for AS/400 Programmer's Guide, SC09-2712

C: The Complete Reference, Herbert Schildt, Osborne McGraw-Hill
Introducing the UNIX SYSTEM, Henry McGilton and Rachel

Morgran, McGraw-Hill
Compiler Constructionfor Digital Computers, David Gries, John

Wiley and Sons Id

Questions or commentsl Please e-mail edito@NaSPA.com.

NaSPA member Richard Tsujimoto h an independant consultant specializing in MQSeries, ClCi

and MVS.

SYNTABLE @RULT

RULEOlO @RULE

@RU LE

RULEO2O @RULE

@RU LI
RULEO3O @RUtE

@RULE

FLUSH @RULE

@RU LE

DONE @RUII
@RU LE

TYPE:INiTIAL
TOK_] S_DATA, N EXT=RU LEO2O, STRI NG:I'4YVAR,

C0l'1l"1ENT:"Start : process 14YVAR"

SYNTAX ERR

TOK_I S_IOUAL, N EXT:RU LTO3O

SYNTAXERR

TOK_I S_NUI'1, NEXT:FLUSH, STRI NG:123
SYNTAXERR,COI\4I"IENT:"End: process l4YVAR"
TOK_IS_EOS,NEXT:DONE
SYNTAXFRR

TASTRU LE

TYPE:FINAL

www"NaSPA,<*m

