
Parsihg, Syntax Checking and lnterpreting-
Part Three

$y fiiclr Tsujim*te

Tnrs rs rne LAST oF A THREE PART ARTICLE, AND wE HAvE REACIIED THE

point where the linear expression has been sliced, diced, and weighed.

What is left is handing over the pieces of data that the customer wants

so that the real objective of the application can be performed. This

process is referred to as interpretation.

WHAT 15 INTERPRETING?

The explanation of this term could be derived from the understand-

ing of what an interpreter does.

'A program that executes instructions written in a highJevel

language. There are two ways to run programs written in a high-

level language. The most common is to compile the program; the

other method is to pass the program through an interyreter.

An interpreter translates high-level instructions into an intermedi-

ate form, which it then executes. In contrast, a compiler translates

highJevel instructions directly into machine language."
-Wikipedia

In this sense, interpretation is the execution of intermediate code

that was generated from a high level language, after the translation

phase. Some well-known languages that do interpretive processing are

Basic, APL and Java.

For example. the following expression:

X:3

would result in the variable X being assigned a value of 3 after inter-

pretation.

This is where I part company with the formal definition of the term

interpretation. The objectives of my tools are:

v To provide a simple means to syntactically check a linear

expression.

v To hand over whatever part of that linear expression the user

wants, as opposed to executing the linear expression itself.

Since no code is actually generated from the linear expression, it
could be reasonably argued that the latter point (where data is handed

over to the user) should have been called extaction instead. But, if one

were to regard the syntax rules in the syntax table as a form of inter-

mediate code, analogous to that produced by interpreters, I would

argue that the processing of handing over data to the user is the direct

result of interpretation.

1

3

SYNTABLE @RULE TYPE:INITIAL
RULEOlO @RULE TOK_JS_DATA,NEXT:RULEO2O,STRING:ABCD

@RI]I I SYNTAX[RR

RULEO2O @RULE TOK_IS_EQUAL,NEXT:RULIO3O
@RULI SYNTAXERR

RUtEO3O @RULE TOK_IS_NU14,NEXT:FLUSH,SIR]NG=123,TXIT:MYEXIT
@RUtE SYNTAXERR

FLUSH @RULE TOK_IS_EOS,NEXT:DONE

@RULT SYNTAXERR

DONT @RULE LASTRULE

@RULT TYPE:FINAL

Figure 1:05/390 modified syntax table change

For example, if we take the same expression:

X:3

the interpretation phase could result in

following values to the user program:

presenting any, or all of the

The,values that are actually given to the user program are deter-

mined by the presence of the keyword EXIT in the OS/390 @RULE

macro, or the specification of a user exit name in the C array of a struc-

ture called syntax_table.

These are user-specified subroutines that are invoked during the

interpretation phase. The exits can be specified on any syntax rule,

except for:

os/390
@RULE TYPE:]NITIAL

@RUtE TYPE:F]NAL

Non-OS/390

STARTRU tE

Specifying O5/390 user exits

The format for specifying user exits on a syntax rule is as follows:

@RU LE TY PE:to ken_type, NEXT:l a bel l, STRi NG:s...s l, EX IT:e...e

30 | re Technical Support I Juile SsSd wwrr'r.NaSPA"san:

where e...e is the subroutine's name. The
address constant that is generated in the syn-
tax table is either an ACON, or a VC0N, and is
determined by the @RULE TypE-iNITIAL
macro:

@RULE TYPE:IN]T]AL, EX ITLOC:LOCAL

generates ACONs (this is the default), and

@RULE TYPE=I NITIAL, IX ITLOC:EXTERNAL

generates VCONs

Note, if the user exit is part of a separate
CSECT, but is not the main entry point, then
an ENTRY e.. .e assembler statement must be
specified in that CSECT.

lnvoking OS/390 user exits
When the interpreter encounters a user exit

specification in a syntax rule, it branches to
the user exit, passing a parameter list via
register l.

Register 1 points to the following 3-word
parameter list:

Address of the token

Length of the token

Address of a 100 byte message buffer

The message buffer is provided to the user
exit in the event it chooses to store an infor-
mationaVerror message.

The user exit signifies if its processing is to
be regarded as successful, or not, by setting
register 15 to 0 (success), or 8 (error).

Speciffing non-OS/390 user exits
The format for specifying user exits on a

syntax rule is as follows:

TokenType, GoToxx [, "s-s',] , &e...e

t, NULL]

where s...s is a string value'and e...e is the
name of the user exit. And, in the case where
there is no string to compare, NULL serves as

a placeholder ind ensures that an empty string
pointer is to be generated in the syntax table.

Invoking non-OS/390 user exits
User exit names must be defined by speci-

fying an extemal function prototype state-
ment for the user exit.

For example:

extern int MYEXIT(char token[]. int
tokenlen, char *errmsg)

;

www.NaSPA.corn

LA R3, PARMLST]
SPACE 1

@PARSE l',1F:(E, R3)

SPACE]

POINT TO PARM LIST

LTR R15,R15 OK?
BNZ PARSE_CI,1D_ERR NO, CONTINUE
SPACE 1

POINT TO @SYNTXCK PARM LIST
POINT TO SYNTAX TABTE

SPACE 1

@SYNTXCK 11F:(E, R3) , SYNTXTB=(R5)
SPACE 1

ANY ERRORS?

YE5, CONTlNUE

PO]NT TO @INTRPRT PARIY LIST
POlNT TO SYNTAX TABLE

SPACE 1

@]NTRPRT I.4F:(E, R3),SYNTXIB:(R5)
SPACE 1

LTR R15, R1 5

87 CHK_I NTRPRT-EX IT
ANY ERROR?

NO, GET OUT

I'4Y EX I T DS OH

PUSH US I NG

SAVE (14 ,12) SAVE CALLER'S REGS
SPACE 1

LR BASEREG,Rl5 PR]ME BASE REG
USING MYEXIT,BASEREG SET ADDR
SPACE 1

ST Rl3,SUBSAVE+4 SAVE PTR TO CALLER'S REG. SAVE AREAtA R13, SUBSAVE PRII4E SAVE AREA PTR
LR R7, R1 PARI{ ADDR
USING /IEXITMAP, R/ SET ADDR
SPACE 1

CLC NUM123,:CL3' ' DUPLICATE?
BNE ITSADUP YIS, CONTINUE
SPACE 1

L R2,@IXTOKAD ADDR OF TOKEN
L R4,@IX]OKLN TOKTN LENGTH
BCTR R4, RO MACH]NE LENGTH
tx R4,C0PY123 COPY Ir
XR R15, R15 SET GOOD RC

B EXIT GET OUT

sPACt 1

ITSADUP DS OH

L R2,@IXERRI'4G ADDR OF I4ESSAGE BUFFER
I',1VC O(L'DUPMSG,R2),DUPMSG SIORE I"lESSAGE
LA R15,8 SET BAD RC

SPACE 1

EXIT DS r)H

L R13,SUBSAVE+4 PT TO CALLER,S REG SAVEAREA
SPACE 1

RETURN (14.,12),RC=(15) GO BACK TO @INTRPRT
SPACE 1

NUr,1123 DC CL3' 123
DUP14SG DC C'))> OUPLICATE 123 <<<'

SPACE 1

DROP R7

oo: usrNG

PARI',1LST1 @PARSE MF:L,CMDLINT:STRING,CI,lDLEN:L'STR]NG,DELII,1TB:DELi[1TAB
PARIVILST2 @SYNTXCK I'1F:I
PARIlLST3 @I NIRPRT MF:1, ERRI'4SG:] ERRI4SG

STRING DS CLBO INPUT STRING
IERRI1SG DS CLiOO ERROR MESSAGE BUFFFR

LA R3, PARMLST2

LA R5, SYNTABLE

LTR R15,Rl5
BNZ SYNTAX_ERR

SPACE 1

LA R3, PARMLST3

LA R5, SYNTABLE

E

Figure 2: lnvoking interpreter on 05/390

Technical Support I June 2006 rrl St

When the interpreter encounters a user exit
specification in a syntax rule, it invokes the

user exit, passing string pointers to the token,

a 100-byte message buffer (not including the

null terminator), and an integer value that

reflects the length of the token (again, not

including the null terminator).

The message buffer is provided to the user

erit in the event it chooses to store an infor-

mationaUerror message.

The user exit signifies if its processing is to

be regarded as successful, or not, by setting

the parameter in the return0 function to 0
(success), or I (error).

PROGRAMMING EXAMPLES

The following examples show how to invoke

the interpreter for both OS/390 and non-

OS/390 platforms. In addition, the code frag-

ments that invoke the parser and syntax checker

are also included for readability's sake.

The syntax table for OS/390 (see Figure 1)

shows that the user exit called MYEXIT is to

be invoked if the evaluation of the syntax rule

is true.

The syntax tables that are alluded to in the

examples are based upon the expression

ABCD=123, which had been used as the pri-
mary example in the first two articles.

The user exit in OS/390 will test if the

string 123 had already been processed, or not
(see Figure 2). If it has, then an effor message

indicating duplicate data has been encoun-

tered is returned to the interpreter.

Assumedly, the user application would han-

dle the error situation, even though the exam-

ples may not show any code to that effect.

The syntax table for non-OS/390 platforms
(see Figure 3) shows that the user exit called

MYEXIT is to be invoked if the evaluation of
the syntax rule is true.

The user exit on non-OS/390 platforms will
test if the string 123 had already been

processed, or not (see Figure 4). If it has, then

an error message indicating duplicate data has

been encountered is refurned to the interpreter.

Assumedly, the user application would handle

the error situation, even though the examples

may not show any code to that effect.

CONCLUSION

Obviously, if the linear expression

ABCD:123 were the one and only statement

that needed to be processed, then using these

tools might be over-kill. Then again, if there

is any chance that the expression may change,

Figure 4: Invoking interyleter on non-0S/390 platforms

or if additional parameters or expressions

may be needed in the future, it may pay in the

long run to invest the time and eiffort to use

the proper tools from the begiming.
Even though the examples used were based

on linear expressions that mimicked com-

mand lines, the tools (parser, syntax checker

and interpreter) could be used for other pur-

pos€s as well, such as validating tag data,

developing a metalanguage, or even creating

a poor man's calculator.

The complexity of the expressions will
determine when using these tools becomes

impractical, and when more sophisticated

struct syntax_tabl e syntaxtab[100J
/* rul e-00 */
/* rul e-01 */
/x rule-AZ */
/* rule-03 */
/* rule-04 */
/* rul e-05 */
/* rule 06 */
l* rule-07 */
/* rul e-08 */
/* rule 09 */

: { /* User
{ STARTRU LE } ,

{ToklsData,
{SYNTAXERR},
{ToklsEqual,
1 SYNTAXIRR} ,

{ToklsNum,
1 SYNTAXERR] ,

{ToklsE0S,
{ SYNTAXERR} ,

{ LASTRULE} } :

syntax rules */

GoTo3, "ABCD" i ,

GoTo5 L

GoTo7, "123", &l'lYEXITI ,

GoTo9) .

Figure 3: Non-05/3911 modilied syntax table change

extern.int IvIYEXIT(char token[], int tokenlen, char *errmsg);

charnum123[4]:" "l

maino
{

char i nbuff |'4AXSTRI NGLEN+1 I ;

j nt tokl en;
int Lokloc:

rc - pars-"(jnbuff, userdel jm);

jf (rc) { /* Error detected by Parser */
pritnf("))) Error detected by Parser, rc:&d\n", rc);

l

rc

if

l

rc

if

return(ERR0R) ;

/* end if */

: syntaxchk(i nbuff, syntaxtab, &tokl oc, &tokl en) ;

(rc) { /* syntax error found */
printf("))) Syntax error jn column %d token length: %d\n"

tokl oc + 1, tokl en) ;

return(ERR0R);
/* end if */

: interpret(jnbuff , syntaxtab) ;

(rc) { i * context error encountered */
printf("+++ rc returned by interpret - %d\n", rc);
return(ERR0R);

] /* end if *i

jnt MYEXIT(char token[], jnt tokenlen, char *errmsg)

{

int i;

for (i :0; i (tokenlen; i++) l

if (num123[j] !: ' ') t
strcat(errmsg,'>>> DUPLICATE 123 <<<";
return(ERR0R);

] /* end if */
l /* end for */

return(SUCCESS);

J /* end of IvIYEXIT */

) /* end main */

32lzo Technical Support I June 2005 www.NaSPA,com

methods are required, e.g. parse trees. But,
from personal experience, I found that using
these tools made it possible to process some
fairly complex expressions, such as a variable
Iength sub-parameter list, delimited by paren-
theses, as opposed to devetoping the code to
pick apart those expressions.

For example, given the foliowing expres_
sion, where free-form text is supported:

\/0tsrR : (uI, u2, ..., Vn)

where Vl...Vn are volume serial numbers.
Would it be easier to code syntax rules and
exit routines, or develop the code to process
this expression?

In addition to the simplicity of this
approach, the other benefits for using these
tools are the consistent methods for process-
ing linear expressions, which makes mainte-
nance easier and, as a result, minimizes the
possibility of developing eror-prone code.

REFERENCE MATERIAL

ESA/390 Principles of Operation, SA22-720 l
HI-ASM VIRl ktnguage ReJerence, SC26-1940
HI"ASM V I R4 Programmer's Guide, SC26-l9l l
ILE C for AS/400 Programmer's Guide,

sc09-27 I2
C: The Complete Reference, Herbert Schitdt,

Osborne McGraw-Hill
Introducing the UNIX SYSTEM, Henry McGilton

and Rachel Morgran, McGraw-Hill
Compiler Construction for Digital Computers,

David Gries, John Witey and Sons 4&

Questions or comments? Please e-mail editor@NaSpA.com.

NaSPA member Richard Tsujimoto is an independant consult,

ant specializing in MQSeries,0C5, and MVS.

Legislation Spotlight: NIAC continuedfrom page 25.

direct, traceable impact is slim, especially
considering the breadth of sectors that the
NIAC represents. This raises the issue of
how much value there is in having a single
organization dedicated to so many sectors
of the national infrastructure, especially
when it is under the Department of
Homeland Security, which is a young
organization itself. The NIAC may benefit
from cultivating relationships with ol<ter,

more established areas of government such

as the Department of Agriculture, the
Department of Labor, and the Department
of Del'ense. To find out more about NIAC-
visit wwwdhs.gov and rype ,NIAC' into
the search function. 1#

Questions or commenu? Please e-mail editor@l-laSpA.rom,

Raehael Zimmermann is the editor for Technical Support

magazine.

ftpalert from williom Dotu Systems lets you controlwho con ftp files io ond from
your_zseries eSeruer.ftpalertinslslls in minutes, secures 0ll FTp oclivily ond, to
sotisfy regulotory (0mplion(e, incorporoies comprehensive, reol time oudit ond
logging focilities for oll FIP usoge.

Euoluoteftpalert todoy. You hove nothing to lose but your d0t0!

ftpalert

:+r,':w"NaSPA"*+l r
Technical Support I J*ar* ?*## zr I 33

