technical support | article

Parsing, Syntax Checking and Interpreting—

Part Three

By Rick Tsujimoto

THIS IS THE LAST OF A THREE PART ARTICLE, AND WE HAVE REACHED THE
point where the linear expression has been sliced, diced, and weighed.
What is left is handing over the pieces of data that the customer wants
so that the real objective of the application can be performed. This
process is referred to as interpretation.

WHAT IS INTERPRETING?

The explanation of this term could be derived from the understand-
ing of what an interpreter does.

“A program that executes instructions written in a high-level
language. There are two ways to run programs written in a high-
level language. The most common is to compile the program; the
other method is to pass the program through an interpreter.

An interpreter translates high-level instructions into an intermedi-
ate form, which it then executes. In contrast, a compiler translates
high-level instructions directly into machine language.”—Wikipedia

In this sense, interpretation is the execution of intermediate code
that was generated from a high level language, after the translation
phase. Some well-known languages that do interpretive processing are
Basic, APL and Java.

For example, the following expression:

would result in the variable X being assigned a value of 3 after inter-
pretation.

This is where 1 part company with the formal definition of the term
interpretation. The objectives of my tools are:

w To provide a simple means to syntactically check a linear
expression.

To hand over whatever part of that linear expression the user
wants, as opposed to executing the linear expression itself.

Since no code is actually generated from the linear expression, it
could be reasonably argued that the latter point (where data is handed
over to the user) should have been called extraction instead. But, if one
were to regard the syntax rules in the syntax table as a form of inter-
mediate code, analogous to that produced by interpreters, I would
argue that the processing of handing over data to the user is the direct
result of interpretation.

30| 1e Technical Support | fune 2006

SYNTABLE @RULE TYPE=INITIAL

RULEO10 @RULE TOK_IS_DATA,NEXT=RULE020,STRING=ABCD
@RULE SYNTAXERR

RULEO20 @RULE TOK_IS_EQUAL,NEXT=RULEO30
@RULE SYNTAXERR

RULEO30 @RULE TOK_IS_NUM,NEXT=FLUSH,STRING=123,EXIT=MYEXIT
@RULE SYNTAXERR

FLUSH @RULE TOK_IS_EOS,NEXT=DONE
@RULE SYNTAXERR

DONE @RULE LASTRULE
@RULE TYPE=FINAL

Figure 1: 05/390 modified syntax table change

For example, if we take the same expression:

the interpretation phase could result in presenting any, or all of the
following values to the user program:

The values that are actually given to the user program are deter-
mined by the presence of the keyword EXIT in the OS/390 @RULE
macro, or the specification of a user exit name in the C array of a struc-
ture called syntax_table.

USER EXITS

These are user-specified subroutines that are invoked during the
interpretation phase. The exits can be specified on any syntax rule,
except for:

0S8/390
@RULE TYPE=INITIAL
@RULE TYPE=FINAL

Non-OS/390
STARTRULE

Specifying OS/390 user exits
The format for specifying user exits on a syntax rule is as follows:

@RULE TYPE=token_type,NEXT=label[,STRING=s..s],EXIT=e..e

www.NaSPA.com

where e...e is the subroutine’s name. The
address constant that is generated in the syn-
tax table is either an ACON, or a VCON, and is
determined by the @RULE TYPE=INITIAL
macro:

@RULE TYPE=INITIAL,EXITLOC=LOCAL
generates ACONs (this is the default), and
@RULE TYPE=INITIAL,EXITLOC=EXTERNAL

generates VCONs

Note, if the user exit is part of a separate
CSECT, but is not the main entry point, then
an ENTRY e...e assembler statement must be
specified in that CSECT.

Invoking 0S/390 user exits

When the interpreter encounters a user exit
specification in a syntax rule, it branches to
the user exit, passing a parameter list via
register 1.

Register 1 points to the following 3-word
parameter list:

Address of the token
Length of the token
Address of a 100 byte message buffer

The message buffer is provided to the user
exit in the event it chooses to store an infor-
mational/error message.

The user exit signifies if its processing is to
be regarded as successful, or not, by setting
register 15 to 0 (success), or 8 (error).

Specifying non-0S/390 user exits
The format for specifying user exits on a
syntax rule is as follows:

TokenType, GoToxx [, “s.s”], &e.e
[, NULL]

_where s...s is a string value and e...e is the
name of the user exit. And, in the case where
there is no string to compare, NULL serves as
a placeholder and ensures that an empty string
pointer is to be generated in the syntax table,

Invoking non-0S/390 user exits

User exit names must be defined by speci-
fying an external function prototype state-
ment for the user exit.

For example:

extern int MYEXIT(char token[], int
tokenlen, char *errmsg);

www.NaSPA.com

MYEXIT

ITSADUP

EXIT

NUM123
DUPMSG

PARMLST1
PARMLST2
PARMLST3
STRING
TERRMSG

LA R3,PARMLST1
SPACE 1

@PARSE MF=(E,R3)

SPACE 1

LTR R15,R15 0K?

BNZ PARSE_CMD_ERR NO, CONTINUE
SPACE 1

LA R3,PARMLST2
LA R5,SYNTABLE
SPACE 1

@SYNTXCK MF=(E,R3),SYNTXTB=(R5)
SPACE 1

LTR R15,RI15

BNZ SYNTAX_ERR

SPACE 1

LA R3,PARMLST3
LA R5,SYNTABLE
SPACE 1

@INTRPRT MF=(E,R3),SYNTXTB=(R5)
SPACE 1

LTR R15,R15

BZ CHK_INTRPRT_EXIT

POINT TO PARM LIST

POINT TO @SYNTXCK PARM LIST
POINT TO SYNTAX TABLE

ANY ERRORS?
YES, CONTINUE

POINT TO @INTRPRT PARM LIST
POINT TO SYNTAX TABLE

ANY ERROR?
NO, GET ouUT

DS OH

PUSH USING

SAVE (14,12)

SPACE 1

LR BASEREG,R15
USING MYEXIT,BASEREG
SPACE 1

ST R13,SUBSAVE+4
LA R13, SUBSAVE

SAVE CALLER’S REGS

PRIME BASE REG
SET ADDR

SAVE PTR TO CALLER’S REG. SAVE AREA
PRIME SAVE AREA PTR

LR R7,R1 PARM ADDR
USING #EXITMAP,R7 SET ADDR
SPACE 1

CLC ~ NUM123,=CL3’ DUPLICATE?

BNE ITSADUP
SPACE 1

L R2,@IXTOKAD
L R4 ,@IXTOKLN

YES, CONTINUE

ADDR OF TOKEN
TOKEN LENGTH

BCTR R4,R0 MACHINE LENGTH
EX R4,COPY123 CoPY IT

XR R15,R15 SET GOOD RC

B EXIT GET OUT

SPACE 1

DS OH

L R2,@IXERRMG ADDR OF MESSAGE BUFFER
MVC O(L’DUPMSG,R2),DUPMSG STORE MESSAGE

LA R15,8 SET BAD RC

SPACE 1

DS OH

L R13,SUBSAVE+4
SPACE 1

RETURN (14,12),RC=(15)
SPACE 1 o
e CL3> - 123
DC C'>>> DUPLICATE 123 <’
SPACE 1

DROP R7

POP USING

PT TO CALLER’S REG SAVEAREA

GO BACK TO @INTRPRT

@PARSE MF=L,CMDLINE=STRING,CMDLEN=L"STRING,DELIMTB=DELIMTAB
@SYNTXCK MF=L

@INTRPRT MF=L,ERRMSG=IERRMSG

DS CL80 INPUT STRING

DS CL100 ERROR MESSAGE BUFFER

Figure 2: Invoking interpreter on 05/390

Technical Support | June 2006

1|31

When the interpreter encounters a user exit
specification in a syntax rule, it invokes the
user exit, passing string pointers to the token,
a 100-byte message buffer (not including the
null terminator), and an integer value that
reflects the length of the token (again, not
including the null terminator).

The message buffer is provided to the user
exit in the event it chooses to store an infor-
mational/error message.

The user exit signifies if its processing is to
be regarded as successful, or not, by setting
the parameter in the return() function to 0
(success), or 1 (error).

PROGRAMMING EXAMPLES

The following examples show how to invoke
the interpreter for both OS/390 and non-
0S5/390 platforms. In addition, the code frag-
ments that invoke the parser and syntax checker
are also included for readability’s sake.

The syntax table for OS/390 (see Figure 1)
shows that the user exit called MYEXIT is to
be invoked if the evaluation of the syntax rule
is true.

The syntax tables that are alluded to in the
examples are based upon the expression
ABCD=123, which had been used as the pri-
mary example in the first two articles.

The user exit in OS/390 will test if the
string 123 had already been processed, or not
(see Figure 2). If it has, then an error message
indicating duplicate data has been encoun-
tered is
Assumedly, the user application would han-

returned to the interpreter.
dle the error situation, even though the exam-
ples may not show any code to that effect.

The syntax table for non-OS/390 platforms
(see Figure 3) shows that the user exit called
MYEXIT is to be invoked if the evaluation of
the syntax rule is true.

The user exit on non-0S/390 platforms will
test if the string 123 had already been
processed, or not (see Figure 4). If it has, then
an error message indicating duplicate data has
been encountered is returned to the interpreter.
Assumedly, the user application would handle
the error situation, even though the examples
may not show any code to that effect.

CONCLUSION

Obviously, if the linear expression
ABCD=123 were the one and only statement
that needed to be processed, then using these
tools might be over-kill. Then again, if there

is any chance that the expression may change,

32|20 Technical Support | June 2006

struct syntax_table syntaxtab[100] = { /* User syntax rules */
/* rule-00 */ {STARTRULE},
/* rule-01 */ {TokIsData, GoTo3, “ABCD”},
/* rule-02 */ {SYNTAXERR},
/* rule-03 */ (TokIsEqual, GoTo5},
/* rule-04 */ {SYNTAXERR},
/* rule-05 */ {TokIsNum, GoTo7, "123”, &MYEXIT},
/* rule-06 */ {SYNTAXERR},
/* rule-07 */ {TokISEOS, GoTo9},
/* rule-08 */ {SYNTAXERR},
/* rule-09 */ {LASTRULE} };

Figure 3: Non-05/390 modified syntax table change

char numl23[4] = *
main()
{
char inbuff[MAXSTRINGLEN+1];

int toklen;
int tokloc;

rc = parse(inbuff, userdelim);

return(ERROR) ;
} /* end if */

if (rc) { /* syntax error found */
tokloc + 1, toklen);
return(ERROR) ;
}o/* end if */

rc = interpret(inbuff, syntaxtab);

return(ERROR) ;
} /* end if */

{

} /* end for */
return(SUCCESS);
} /* end of MYEXIT */

} /* end main */

extern int MYEXIT(char token[], int tokenlen, char *errmsg);

if (rc) { /* Error detected by Parser */
pritnf(“>>> Error detected by Parser, rc=&d\n”, rc);

rc = syntaxchk(inbuff, syntaxtab, &tokloc, &toklen);

printf(“>>> Syntax error in column %d token length = %d\n”,

if (rc) { /* context error encountered */
printf(“+++ rc returned by interpret = %d\n”, rc);

int MYEXIT(char token[], int tokenlen, char *errmsg)

int i;
for (i = 0; 1 < tokenlen; i++) {
if (numl23[i] = °) {
strcat(errmsg, “>>> DUPLICATE 123 <<K”;
return(ERROR);
} /* end if */

Figure 4: Invoking interpreter on non-05/390 platforms

or if additional parameters or expressions
may be needed in the future, it may pay in the
long run to invest the time and effort to use
the proper tools from the beginning.

Even though the examples used were based
on linear expressions that mimicked com-
mand lines, the tools (parser, syntax checker

and interpreter) could be used for other pur-
poses as well, such as validating tag data,
developing a meta-language, or even creating
a poor man’s calculator.

The complexity of the expressions will
determine when using these tools becomes
impractical, and when more sophisticated

www.NaSPA.com

methods are required, e.g. parse trees. But,
from personal experience, I found that using
these tools made it possible to process some
fairly complex expressions, such as a variable
length sub-parameter list, delimited by paren-
theses, as opposed to developing the code to
pick apart those expressions.

For example, given the following expres-
sion, where free-form text is supported:

VOLSER = (V1, ¥2, .., ¥n)

where V1.Vn are volume serial numbers.
Would it be easier to code syntax rules and
exit routines, or develop the code to process
this expression?

In addition to the simplicity of this
approach, the other benefits for using these
tools are the consistent methods for process-
ing linear expressions, which makes mainte-
nance easier and, as a result, minimizes the
possibility of developing error-prone code.

REFERENCE MATERIAL

ESA/390 Principles of Operation, SA22-7201

HLASM VIR4 Language Reference, SC26-4940

HILASM VIR4 Programmer’s Guide, SC26-4941

ILE C for AS/400 Programmer’s Guide,
§C09-2712

C: The Complete Reference, Herbert Schildt,
Osborne McGraw-Hill

Introducing the UNIX SYSTEM, Henry McGilton
and Rachel Morgran, McGraw-Hill

Compiler Construction for Digital Computers,
David Gries, John Wiley and Sons %

Questions or comments? Please e-mail editor@NaSPA.com.

NaSPA member Richard Tsujimoto is an independant consult-
ant specializing in MQSeries, CICS, and MVS.

wivw.NaSPA.com

Legislation Spotlight: NIAC continued from page 25.

direct, traceable impact is slim, especially
considering the breadth of sectors that the
NIAC represents. This raises the issue of
how much value there is in having a single

as the Department of Agriculture, the
Department of Labor, and the Department
of Defense. To find out more about NIAC,
visit www.dhs.gov and type ‘NIAC’ into

organization dedicated to so many sectors the search function. %
of the national infrastructure, especially
when it is under the Department of
Homeland Security, which is a young
organization itself. The NIAC may benefit -
from cultivating relationships with older,

more established areas of government such

Questions or comments? Please e-mail editor@NaSPA.com.

Rachael Zimmermann is the editor for Technical Support
magazine.

Do you know j
who F**'d

your data? S8

FTP is a dirty word in some /
circles. Without you

knowing, personnel,

patient, payroll

or other confidential
corporate information
can be refrieved
from your company
and sent anywhere!

This can all be achieved with the universal File Transfer
Protocol (FTP), often used, easily abused but rarely managed.

FREE FTP ACTIVITY CHECKER:

Download your free copy of the 2/0S FIP activity checker from www.willdata.com/ts.htm

Jftpalert from William Data Systems lets you control who can fip files to and from
your zSeries eServer. ftpalert installs in minutes, secures all FTP activity and, to
satisty regulatory compliance, incorporates comprehensive, real time audit and
logging facilities for all FTP usage.

Evaluate fzpalert today. You have nothing to lose but your data!

fipalert wServer,,

Call (877) 723-0008 or (703) 674-2200

or visit www.willdata.com /ts.htm

IBM and ServerProven are trademarks of International Business Machines Corporation in the United Stales.
other countries, or both.

Technical Support | fune 2006 2133

