

High-Performance JMS Messaging

A Benchmark Comparison of Sun Java System Message
Queue and IBM WebSphere MQ

Crimson Consulting Group, Inc.
4970 El Camino Real
Los Altos, CA 94022
650.960.3600

JMS Performance Benchmark White Paper - version 3 ii
© 2003 Crimson Consulting Group

650.960.3737 (fax)
www.crimson-consulting.com
info@crimson-consulting.com

JMS Performance Benchmark White Paper - version 3 iii
© 2003 Crimson Consulting Group

About Crimson Consulting

Crimson provides marketing strategy and implementation consulting to technology companies.

Crimson can manage client engagements and take responsibility for their successful completion, or
our clients can manage our expert consultants directly. Many engagements focus on one of our
specialized practice areas:

• Market Assessment - evaluating markets, competitive analyses, gathering intelligence

• Partner Programs - identifying optimal partners, providing best practices

• Strategic Sales Tools - developing ROI models, TCO tools, and decision-making maps

For situations where the client would like to manage the consultants directly, we provide interim
marketing VPs, Directors, and Managers in the areas of product marketing, product management,
channel marketing, marketing communications, market research, etc.

For more information, contact Crimson Consulting Group at 650-960-3600 x117 or
info@crimson-consulting.com.

Copyright© 2003 Crimson Consulting Group, Inc. All Rights Reserved.

IBM and WebSphere MQ are registered trademarks of IBM Corporation. Sun Microsystems, Sun
ONE, Java, UltraSparc and Solaris are trademarks or registered trademarks of Sun Microsystems
Inc.

JMS Performance Benchmark White Paper - version 3 iv
© 2003 Crimson Consulting Group

Table of Contents

Introduction ...1
Sun Java System Message Queue ...Error! Bookmark not defined.
IBM WebSphere MQ ...1

Test Description and Methodology ...2

Testing Variables ..2
Point-to-Point...2
Publish-and-Subscribe ..2
Acknowledgements ...3
Persistence..3
Selectors..3
Durable Subscriptions ...3

Results ...4
Queue, Non-Persistent, No Selectors ...4
Queue, Persistent, No Selectors ...4
Queue, Non-Persistent, with Selectors ...5
Queue, Persistent, with Selectors ...5
Publish/Subscribe, Non-Persistent, No Selectors ...6
Publish/Subscribe, DUPS_OK, Persistent, No Selectors..6
Publish/Subscribe, AUTO_ACK, Persistent, No Selectors ...7
Publish/Subscribe, Durable, Persistent, with Selectors ..7

Conclusion...8

Appendices..9
Appendix A—Complete List of Tests...9
Appendix B—Complete Test Results ..11
Appendix C—Test Environment ..13

JMS Performance Benchmark White Paper - version 3 1
© 2003 Crimson Consulting Group

Introduction

Application integration is a mission critical requirement for delivering successful e-business solutions
and for maximizing the potential of every new application that is developed and deployed. The
application integration required for e-business involves integrating data and business processes
among a wide range of legacy systems, ERP solutions, and custom applications both internal and
external to the organization.

Over the past several years, enterprise messaging systems, sometimes called message oriented
middleware (MOM), have offered a flexible, fast, and well-connected means of exchanging
information among applications without the need to build large numbers of individual interfaces.
Acting as an intermediary, MOM systems exchange data (messages) between applications within a
store-and-forward framework. Enterprise applications need not communicate directly with each other,
but communicate only with the MOM, which buffers and routes messages as required.

The disadvantage of early MOM systems was that they required costly and time-consuming
integration efforts. Each MOM vendor provided a different Application Programming Interface (API)
for its product. Application software vendors had to write messaging components for their applications
and special adapters for each application that they wanted to integrate with.

These challenges were addressed with the introduction of the Java Message Services API, which is
part of the core J2EE platform. Java Message Services (JMS) provides a standard, portable way for
Java programmers to access MOM products. JMS portability is assured through a well-defined set of
interfaces along with a standard reference implementation.

Despite their similarities in functionality, different JMS implementations deliver different performance
and scalability under heavy workloads. This paper defines real-world scenarios in which messaging
may be used, and provides a detailed performance comparison between two JMS implementations:
The Java System Message Queue and the IBM WebSphere MQ products.

Sun Java System Message Queue
The Sun Java System Message Queue (formerly Sun ONE Message Queue) is a standards-based,
business integration software that connects business applications by enabling them to exchange
asynchronous messages over an enterprise message server. The product supports both Point-to-
Point and Publish-Subscribe modes of asynchronous messaging. Through its support of the industry-
standard Java Message Service specification, and its C Messaging API, the Java System Message
Queue allows developers to integrate their Java and native C/C++ applications on multiple platforms.
It provides enterprise-strength reliability through features like “once-only” delivery and global
transactions; and advanced security features including encryption and authorization to ensure the
confidentiality and validity of messages. The Java System Message Queue can scale to manage
varying workloads through features such as clustering, configurable message delivery policies, and
load balancing. Other features such as client connection failover allow the product to be highly
available and suitable for enterprises requiring high uptime. Additional features include multiple
message transports, a remote monitoring API, and web services support through SOAP messaging.

IBM WebSphere MQ
IBM WebSphere MQ (formerly known as IBM MQSeries) enables application integration by helping
business applications exchange information across platforms by sending and receiving data as
messages. WebSphere MQ takes care of network interfaces, ensure “once only” delivery of
messages, manage communications protocols, dynamically distribute workload across available
resources, handle recovery after system problems, and help make programs portable. WebSphere
MQ provides a consistent, multi-platform API. WebSphere MQ Java and an implementation of the
Java Messaging Service API are supplied with the product. Additional capabilities include scalability,

JMS Performance Benchmark White Paper - version 3 2
© 2003 Crimson Consulting Group

security, system administration, and the ability for applications to operate as publish/subscribe
brokers on most platforms and as publishers or subscriber on any platform to automate the
distribution of relevant information to all applications that have registered an interest in a particular
topic.

Test Description and Methodology

Performance in these tests is defined as the number of 1024-byte messages each product processed
per second for each test configuration. All software was installed on a SunFire™ V210 with two 1GHz
UltraSPARC IIIi processors and 2GB of RAM running Solaris-8 using the vendor’s default installation
settings. Tests were conducted under the following conditions:

• All tests were repeated numerous times until the recorded data from multiple runs varied by a
2-sigma (95% confidence interval) of all measured values for each test.

• Each sender and each client used a single JMS connection.

• Results do not include network latencies for client connections.

• 10,000 messages of 1024 bytes each were sent in each test.

• No machine exceeded 75% CPU utilization or 75% memory utilization.

Testing Variables

JMS offers two messaging designs: point-to-point and publish-and-subscribe. A series of benchmark
tests were run measuring the performance of the Sun and IBM message queuing software using each
of these methods. While testing these two messaging designs, we tested the impact of a number of
variables, which are described in this section.

Point-to-Point
The point-to-point message model handles messages intended for a single receiver. Within a point-
to-point message system, the messaging provider establishes queues to help ensure that a message
is delivered to only one receiver only once. An example of an application using the point-to-point
approach might be an employee portal that accesses a product ordering application. In this
application, a sales representative logs onto his employee website. His personalized portal channels
include a purchase request form. The employee fills out the form and the Purchase Request Servlet
places the order information in a queue for later processing. Later, a financial officer logs onto the
employee portal website to view all purchase/order requests awaiting approval. A purchase approval
servlet pulls all the orders that the finance officer needs to approve off of the Requests Queue. Once
the request is approved, it is placed in the Orders queue for processing. The supplier then monitors
the Orders queue and processes the order when it arrives on the queue.

Publish-and-Subscribe
Publish-and-subscribe systems handle messages intended for multiple receivers. Publish-and-
subscribe systems send messages to a destination called a topic. An example of an application using
publish-and-subscribe would be a manufacturer that needs to communicate schedule and quantity
changes from its demand forecasting system to suppliers. The manufacturer would use the publish-
and-subscribe system to send the messages simultaneously to all vendors supplying components for
a particular product.

JMS Performance Benchmark White Paper - version 3 3
© 2003 Crimson Consulting Group

Acknowledgements
MOM applications use acknowledgements to notify the messaging provider when its message has
been successfully received. This ensures that messages are delivered successfully and that they are
delivered only once. Some applications may tolerate duplicate message delivery, such as when an
inventory system periodically notifies a manufacturer of current inventory levels. For these
applications, JMS supports a DUPS_OK acknowledgement model that allows the messaging provider
to speed acknowledgement processing by allowing for the possibility that some duplicate messages
may be delivered in the case of provider failure. We compared the IBM and Sun software running
several tests with and without the DUPS_OK optimization.

Persistence
Persistent messages are written to stable storage (i.e. to disk) by the provider to ensure message
integrity in the event of a provider failure. We compare the IBM and Sun systems running several of
our tests with and without persistence.

Selectors
Selectors allow message recipients to specify specific types of messages that they want to see; for
example, a user might specify that they only want to see messages from Joe. We ran several tests
comparing the performance impact of the use of selectors on each of the two tested systems.

Durable Subscriptions
Nondurable subscriptions last for the lifetime of the subscriber. In other words, a subscriber will only
see messages published to a topic while the subscriber is active; if the subscriber is not active, it will
miss messages published to the topic. A subscriber can also be made durable—at the cost of higher
overhead. When a subscriber is durable, the messaging provider maintains the subscription even if
the client is inactive and stores messages for the client. When the client comes back up, it is able to
retrieve messages that it would have otherwise missed. A user might want durable messages in an
inventory update system where he is required to know what parts are in stock; non-durable messages
would be more appropriate for a news clipping service that continually provides the most up-to-date
information. We tested the impact of durability on performance in various tests.

JMS Performance Benchmark White Paper - version 3 4
© 2003 Crimson Consulting Group

Results

Test results indicate that Java System Message Queue consistently achieves higher throughput than
IBM WebSphere MQ, yielding better performance results. The following bar charts demonstrate how
Sun outperforms IBM under a wide range of usage scenarios. For a complete list of tests, see
Appendix A.

Queue, Non-Persistent, No Selectors
In this test (Q5 in Appendix A), we used a point-to-point scenario with one sender and one receiver.
We put on the queue and removed 10K messages of 1024 bytes. This test measured how fast a
queue can deliver non-persistent messages with no selectors.

Queue, Persistent, No Selectors
This test (Q7) sent 10K 1024-byte messages to a queue with an active receiver using a DUPS_OK
acknowledgement. This test measures the throughput of a persistent queue when the DUPS_OK
optimization is allowed.

JMS Performance Benchmark White Paper - version 3 5
© 2003 Crimson Consulting Group

Queue, Non-Persistent, with Selectors
This test (Q9) sent 10K 1024-byte messages to a queue with an active receiver that specifies a
selector. This test measures the throughput of a point-to-point queue when the overhead of a selector
is introduced.

Queue, Persistent, with Selectors
This test (Q12) sent 10K persistent messages to a queue with an active receiver using a selector.
This test demonstrates the throughput of a persistent queue when the overhead of a selector is
introduced.

JMS Performance Benchmark White Paper - version 3 6
© 2003 Crimson Consulting Group

Publish/Subscribe, Non-Persistent, No Selectors
This test (T3) sends 10K non-persistent messages to a publish/subscribe topic. It measures how fast
messages can be put into and taken out of the topic with one publisher and one subscriber.

Publish/Subscribe, DUPS_OK, Persistent, No Selectors
This test (T9) delivers 10K persistent messages to a publish/subscribe topic. It measures how fast a
messaging provider can deliver persistent publish/subscribe messages with the lower overhead of
Request/Response operations using the DUPS_OK acknowledgement.

JMS Performance Benchmark White Paper - version 3 7
© 2003 Crimson Consulting Group

Publish/Subscribe, AUTO_ACK, Persistent, No Selectors
This test (T10) delivers and drains 10K persistent messages to and from a publish/subscribe topic. It
measures how fast a messaging provider can deliver persistent messages when the subscriber has
specified no selectors but has to confirm processing of the message.

Publish/Subscribe, Durable, Persistent, with Selectors
This test (T13) uses the publish/subscribe semantics and has both persistence and selectors turned
on. It measures how fast 10K messages can be published to a persistent topic, selected by a durable
subscriber, and drained out of the topic.

JMS Performance Benchmark White Paper - version 3 8
© 2003 Crimson Consulting Group

Conclusion

Overall, the Java System Message Queue system had significant performance advantages over IBM
WebSphere MQ. Within the point-to-point tests, Sun’s solution was 10.5x faster on average, with a
maximum advantage of 2,050% on some tests. For the publish/subscribe tests, Sun’s product was at
least 6.7x faster on average, with a maximum performance advantage of 2,080%.

The test performance figures lead to one remarkable conclusion – Sun Java System Message Queue
is significantly more efficient than its counterpart. To quantify the difference, a company would need,
depending on queue or topic architecture, from 6 to 10 computers running IBM MQ to equal 1
computer running Sun MQ. The performance difference can lead to staggering disparities in both
hardware and software costs.

Sun’s higher performance allows organizations to reduce costs by maximizing the efficiency of their
network computing hardware. It also enables organizations wishing to develop highly integrated e-
business solutions to more effectively scale their solution to meet the peak requirements of their
large, mission critical e-business applications.

JMS Performance Benchmark White Paper - version 3 9
© 2003 Crimson Consulting Group

Appendices

Appendix A—Complete List of Tests
The following is a complete description of all the benchmark tests that were performed:

Point-to-Point Tests
The following tests were for the point-to-point messaging model.

Q1. Send 10K messages to the queue. This test measures how fast the queue can accept non-
persistent messages.

Q2. Deliver 10K messages from a queue. This test measures how fast the queue can deliver non-
persistent messages.

Q3. Send 10K persistent messages to the queue. This test measures how fast a queue can deliver
persistent messages.

Q4. Deliver 10K persistent messages from a queue. This test measures how fast a queue can
deliver persistent messages.

Q5. Send 10K messages to a queue with an active receiver using DUPS_OK acknowledgement.
This test measures the throughput of a queue when the DUPS_OK optimization is allowed.

Q6. Send 10K messages to a queue with an active receiver using AUTO_ACK acknowledgement.
This test demonstrates the throughput of a queue without the DUPS_OK optimization.

Q7. Send 10K persistent messages to a queue with an active receiver using DUPS_OK
acknowledgement. This test measures the throughput of a persistent queue when the
DUPS_OK optimization is allowed.

Q8. Send 10K persistent messages to a queue with an active receiver using AUTO_ACK
acknowledgement. This test measures the throughput of a persistent queue without the
DUPS_OK optimization.

Q9. Send 10K messages to a queue with an active receiver that uses a selector. Use DUPS_OK
acknowledgement. This test measures the throughput of a queue when the overhead of a
selector is introduced.

Q10. Send 10K messages to a queue with an active receiver that uses a selector. Use AUTO_ACK
acknowledgement. This test demonstrates the throughput of a queue without the DUPS_OK
optimization when the overhead of a selector is introduced.

Q11. Send 10K persistent messages to a queue with an active receiver using a selector. Use
DUPS_OK acknowledgement. This test demonstrates the throughput of a persistent queue
when the overhead of a selector is introduced.

Q12. Send 10K persistent messages to a queue with an active receiver using a selector. Use
AUTO_ACK acknowledgement. This test measures the throughput of a persistent queue
without the DUPS_OK optimization when the overhead of a selector is introduced.

JMS Performance Benchmark White Paper - version 3 10
© 2003 Crimson Consulting Group

Publish-and-Subscribe Tests
The following tests were performed for the publish-and-subscribe messaging model.

T1. Send 10K messages to a topic. This test measures how fast a topic can accept non-persistent
messages.

T2. Send 10K persistent message to a topic. This test measures how fast a topic can accept
persistent messages.

T3. Send 10K messages to a topic with an active subscriber using DUPS_OK acknowledgement.
This test measures the throughput of the topic with the DUPS_OK optimization is allowed.

T4. Send 10K messages to a topic with an active subscribers using AUTO_ACK acknowledgement.
This test demonstrates the throughput of a topic without the DUPS_OK optimization.

T5. Send 10K persistent messages to a topic with an active subscriber using DUPS_OK
acknowledgment. This test measures the throughput of a persistent topic when the DUPS_OK
optimization is allowed.

T6. Send 10K persistent messages to a topic with an active subscriber using AUTO_ACK
acknowledgement. This test measures the throughput of a persistent topic without the
DUPS_OK optimization.

T7. Send 10K messages to a topic with an active durable subscriber using the DUPS_OK
acknowledgement. This test measures the throughput of a persistent topic with the DUPS_OK
optimization.

T8. Send 10K messages to a topic with an active durable subscriber using the AUTO_ACK
acknowledgement. This test measures the throughput of a non-persistent topic without the
DUPS_OK optimization.

T9. Send 10K persistent messages to a topic with an active durable subscriber using the
DUPS_OK acknowledgement. This test measures the throughput of a persistent topic with the
DUPS_OK optimization.

T10. Send 10K persistent messages to a topic with an active durable subscriber with the
AUTO_ACK acknowledgement. This test measures the throughput of a persistent topic without
the DUPS_OK acknowledgement.

T11. Sends 10K messages to a topic with an active subscriber that uses a selector and the
DUPS_OK acknowledgement. This test demonstrates the throughput of a topic with the
DUPS_OK optimization when the overhead of a selector is introduced.

T12. Sends 10K persistent messages to a topic with an active subscriber that uses a selector with
the DUPS_OK acknowledgement. This test demonstrates the throughput of a persistent topic
with the DUPS_OK optimization when the overhead of a selector is introduced.

T13. Sends 10K persistent messages to a topic with an active subscriber that uses a selector with
the AUTO_ACK acknowledgement. This test demonstrates the throughput of a persistent topic
without the DUPS_OK optimization when the overhead of a selector is introduced.

JMS Performance Benchmark White Paper - version 3 11
© 2003 Crimson Consulting Group

Appendix B—Complete Test Results

Test

S / R

P / NP

ACK Mode

Selectors

IBM
(Msgs/sec)

Sun
(Msgs/sec)

Sun
Performance

vs. IBM
Q1 S NP N/A No 2,051.54 8,047.44 392%

Q2 R NP DUPS_OK No 2,163.23 6,073.41 281%

Q3 S P N/A No 102.07 1,607.32 1,575%

Q4 R P AUTO No 138.66 1,726.08 1,245%

Q5 SR NP DUPS_OK No 1,682.78 3,870.93 230%

Q6 SR NP AUTO No 1,697.03 1649.74 97%

Q7 SR P DUPS_OK No 54.21 1,167.22 2,153%

Q8 SR P AUTO No 53.41 1,078.90 2,020%

Q9 SR NP DUPS_OK Yes 936.21 3,432.62 367%

Q10 SR NP AUTO Yes 956.84 1,554.37 162%

Q11 SR P DUPS_OK Yes 54.26 1,139.40 2,100%

Q12 SR P AUTO Yes 53.85 1,048.07 1,946%

T1 S NP N/A No 1,906.09 12,148.44 637%

T2 S P N/A No 925.61 2,898.96 313%

T3 SR NP DUPS_OK No 1,526.18 3,946.48 259%

T4 SR NP AUTO No 1,550.40 1,625.71 105%

T5 SR P DUPS_OK No 728.37 1,818.05 250%

T6 SR P AUTO No 734.20 1,432.25 195%

T7 SR NP DUPS_OK No 1,317.69 3,858.88 293%

T8 SR NP AUTO No 1,318.97 1,637.38 124%

T9 SR P DUPS_OK No 55.40 1,205.26 2,176%

T10 SR P AUTO No 54.77 1,062.71 1,940%

T11 SR NP DUPS_OK Yes 1,441.49 3,686.22 256%

T12 SR P DUPS_OK Yes 737.26 1,704.76 231%

T13 SR P AUTO Yes 54.81 1,028.73 1,877%

S/R: S = Messages deposited into queue, no receivers
 R = Messages retrieved from the queue, no senders
 SR = One sender, one receiver
P/NP: P = Persistent
 NP = Non-Persistent
ACK Mode: AUTO = Auto acknowledgement,
 DUPS_OK = Duplicates OK acknowledgement
 N/A = Not Applicable (Sender only)
Selectors: Selectors used

JMS Performance Benchmark White Paper - version 3 12
© 2003 Crimson Consulting Group

JMS Performance Benchmark White Paper - version 3 13
© 2003 Crimson Consulting Group

Appendix C—Test Environment
The comparative information published in this document reflects laboratory tests undertaken by
Crimson Consulting, Los Altos, CA. Performance in individual cases may vary depending on the
environment, workload, and any unique characteristics of other software products at other locations.

Crimson tested IBM WebSphere MQ software version 5.3 core product plus the 5.3 JMS client
provider for Sun Solaris and Java System Message Queue version 3.5 for Sun Solaris.

All the recommended patches for both packages running on a generic Solaris 8 operating system
were installed. The system on which tests were conducted was patched with the standard Sun-
recommended patch cluster for Solaris-8 as of November 24, 2003.

We used the Java Software Development Kit (JDK) version 1.4.1 to compile and run the Java source
code tests. Bourne shell wrapper scripts ran large sequences of tests automatically.

We installed the products from both vendors using default “out-of-the-box” configurations. We
performed no other operating system tuning or product configuration of any kind, except to create the
test queues.

We ran the tests on a SunFire V210 with two 1GHz UltraSPARC IIIi processors and 2GB RAM.

We ran the java testing clients locally on the same system as the message queue JMS software to
avoid variations in network latencies.

The testing code measured “wall clock” seconds for each test. We defined the performance indicator
as the number of messages processed per second in each test.

We ran scripts that repeated all tests numerous times, over several hours until acceptably high
confidence values were achieved.

