
Designing the first application

Page 1

Designing the first application – Hello World

Preface

The easiest way to get familiar with the VT-OS is through a simple example. This
tutorial will describe how to build a “Hello World” application and show how to
debug it on board.

Introduction

The tutorial will first introduce the compile tools, including environment settings,
compiler & linker, resource compiler and application builder. Then we will start
the design of the application, and finally discuss the coding of the application.

Requirements

1. GCC compiler for MIPS R3000A
2. Resource compiler
3. Application Builder
4. Windows 95/98 or DOS with DPMI memory support
5. Helio and cradle

The compilers can be found in the VT-OS SDK and you can get the application
builder on the web easily. Please note that if the optimization option of the C
compiler is enable (-O), more memory is required for compiling complex code.
You may need to set a larger DMPI memory in this case. Please reference to the
environment section for detail description.

Environment settings

In the directory \SDK\COMPILER\GNU you will find a batch file –
SETENV.BAT. The content is :

SETENV.BAT

REM mips-idt-ecoff
SET PATH=d:\GNU\BIN;d:\BIN;%PATH%
SET GCC_EXEC_PREFIX=d:\GNU\LIB\
SET INFOPATH=d:\GNU\INFO
SET C_INCLUDE_PATH=d:\GNU\include
SET CPLUS_INCLUDE_PATH=d:\GNU\include\cxx;d:\GNU\include
SET GO32=DPMISTACK 2048000
REM Set TMPDIR to point to a ramdisk if you have one
SET TMPDIR=C:\TMP

Designing the first application

Page 2

Please remember to set the correct path for the GNU tools. In order to support
optimization, you may need to set the DPMISTACK to a larger value, the size
2048000 is suitable for all VT-OS components. When operate under Windows
DOS prompt, set the “MS-DOS protected-mode (DPMI) memory” to 65535 in the
properties as well. If you have spare RAM, setting the TMPDIR to a ramdrive
will speedup the compilation time.

You may also want to set the output redirection for long warning/error messages.

SET GO32=DPMISTACK 2048000 1R2
Redirect stdout to stderr.

SET GO32=DPMISTACK 2048000 2R1
Redirect stderr to stdout

The message output will put to the listing file if the list file option (-Wa,-a>$@~)
of the GCC compiler is enable. Please refer to the MAKEFILE section for more
information.

Compiler & Linker

The VT-OS and the application are compiled by the GCC compiler. Before you
can start the compilation, you have to prepare two files. They are LINK.CMD and
MAKEFILE. Here list the content of the two files for “Hello World” application.

LINK.CMD

OUTPUT_FORMAT("ecoff-littlemips")
ENTRY(appstart)

MEMORY
{

FLASH : org = 0x9FC30000, l = 1M
RAM : org = 0x10000000, l = 1M

}

SECTIONS
{

.head :
{

_fhead = . ;
obj/appstart.o(.data)

ehead = . ;
} > RAM
.text :
{

 _ftext = . ;
obj/appstart.o(.text)

 *(.text)
 obj/resdata.o(.data)
 etext = . ;

Designing the first application

Page 3

} > RAM
.data ALIGN(0x1000) :

/* .data :*/
{

_fdata = . ;
*(.data)
*(.rdata)

edata = . ;
} > RAM
.bss :
{

_fbss = . ;
*(.bss)
*(COMMON)
*(.common)
*(.scommon)

ebss = . ;
} > RAM

}

The LINK.CMD provides address information to the linker. The MEMORY{}
section define the accessible address and the size for that address. The mapping of
the address can be found in the file \SDK\OS MANUAL\OS OVERVIEW.PDF.
Generally, all download applications, will use the RAM region for both code and
data.

The SECTIONS section defines the address of each section of the program. For a
download application, it contains a header section, which describes the location of
the code and data region, and this information is stored in the file APPSTART.S.

Follow the header it is the code section. Please note that you need to place the file
APPSTART.O before the others, the default starting address is at 0x10000020,
which should be the code in APPSTART.S that jump to __main. Normally, you
do not need to modify the APPSTART.S if you program starts at __main().

The data region is 4KB align and the uninitialised data region is placed after the
data region. The OS will allocate RAM according to the .data and .bss size when
the program is executed.

MAKEFILE

TOOLS=d:/gnu/bin

ENDIAN=EL
OBJ=obj

HWOBJ = $(OBJ)/appstart.o $(OBJ)/aplaunch.o $(OBJ)/app.o $(OBJ)/resdata.o $(OBJ)/syscall.o
$(OBJ)/main.o

PROCESSOR = POSEIDON

Designing the first application

Page 4

Assembler option
AS= ${TOOLS}/gcc -Wa,-a>$@~ -O2 -G0 -c -g -$(ENDIAN) -DPR31700

Compiler option
CC= ${TOOLS}/gcc -Wa,-a>$@~ -O2 -G0 -c -g -s -$(ENDIAN) -msoft-float -mno-abicalls -mips2 -
DPR31700

Linker option
LD= ${TOOLS}/ld -n -warn-common -Map link.map -$(ENDIAN)

$(OBJ)/%.o: %.S
echo $(AS) $<
$(AS) $< -o $@

$(OBJ)/%.o: %.c
echo $(CC) $<
$(CC) $< -o $@

main.obj: $(HWOBJ)
$(LD) -nostdlib -G 0 -T link.CMD -o $@ $(HWOBJ)

echo size
$(TOOLS)/size -x $@

echo ------------------ objcopy ------------------
$(TOOLS)/objcopy -O srec $@ a.

echo ------- Please enter "BUILD" to build the final image -------

The MAKEFILE contains the information for the compiler. We use simple syntax
to enable the compilation. The details of the compiler and the assembler option
are described in the directory \SDK\COMPILER\GNU\INFO\.

The Helio runs in little endian mode –EL. We add the –MIPS2 option to enable
the branch likely instruction. After the compilation, a MAIN.OBJ is generated and
the listing file is placed in directory .\OBJ as *.O~ if the option -Wa,-a>$@~ is
enable.

The object code is then chop by the program CHOP.EXE to form the binary
image as MAIN.OUT. You can use the batch file BUILD.BAT to complete the
job automatically. The main.out is the file required for building the downloadable
image by the application builder.

BUILD.BAT

del main.out
make
chop main.obj main.out .head .text .data

Please note that the CHOP.EXE arguments contain the name as defined in the
LINK.CMD. Only the sections listed in the arguments will be copy to the image.

Designing the first application

Page 5

The .bss region does not include in the image since it will be created by the OS in
run time.

Resource Compiler

Resource compiler is a tool helping developers to generate a resource file that can
be read by the system.

After the completion of the plain-text resource file, then resource compiling can
be proceeded. The steps are as below:

1. Execute the rcompile.exe as rcompile <name of resource file>
2. A resource.bin file is generated out
3. Execute the bin2hex.exe as bin2hex <resource.bin> <name of output C file>
4. The output C file is the compiled C-format resource file that the system can be

read. The file should be included in the make file

Please note that the resource file should not constains any trailing space. The
BMP file referenced in the resource file is in WINDOWS format with 16 grey
level and no compression.

Application Builder

Application Builder is a tool helping developer to generate the required format of
application or device driver to download to PDA. There are a number of options
in the builder for the developers to set. They are Application Name, Application
Run Speed, Application Type, Add-on System Calls and Add-on Hook Table.
More details of the settings can be found in Quick Guide to AppBuilder.doc.

After all information is provided, the MAIN.OUT of the application or device
driver can be converted to a .APP file for downloading to PDA.

Application Design

The application design of an application for the Helio PDA starts by designing the
screen layout of the applications and by preparing the resource file.

A resource file is a plain-text file. It includes the descriptions of all the UI objects
that are used in the application. In the tutorial example, a “Hello World”
application consists of one screen layout with a label in the middle of the screen.
The resource file consists of two UI objects: form and string. Here is the resource
file of “Hello World”.

Designing the first application

Page 6

HWRES.TXT

//--- FORM_HELLO ---

#FORM
NAME=FORM_HELLO
ID=0
~F0
(B)OBJECT.TYPE=FORM
~F1
(SH)BOUNDS.X=0
(SH)BOUNDS.Y=0
(SH)BOUNDS.WIDTH=160
(SH)BOUNDS.HEIGHT=160
~F2
(U)FOCUSED_OBJECT=1
~F3
 (B)FORM_STYLE=NORMAL
~F4
 (S)FORM_TITLE=Hello World
~F5
 (SH)FORM_BITMAP.X=0
(SH)FORM_BITMAP.Y=0
 (SH)FORM_BITMAP.WIDTH=10
(SH)FORM_BITMAP.HEIGHT=12
 (P)FORM_BITMAP.FILE=Q_TWO_BIT,helloi.BMP
~F6
(U)NO_OF_OBJECTS=1
~F7
 (U)OBJECT_ID=1
 (B)OBJECT_TYPE=STRING
#END_FORM
//--- STRING_HELLO --

#STRING
NAME=STRING_HELLO
ID=1
~F0
(B)OBJECT.TYPE=STRING
~F1
 (U)RELATED_TABLE_ID=65535
~F2
 (SH)BOUNDS.X=20
(SH)BOUNDS.Y=50
 (SH)BOUNDS.WIDTH=50
(SH)BOUNDS.HEIGHT=9
~F3
 (B)STRING_STYLE=STRING_O
~F4
 (S)STRING_TEXT=Hello World!
~F5
 (B)STRING_FONT_COLOR=COLOR_BLACK
~F6
 (B)STRING_BACKGROUND_COLOR=COLOR_WHITE
~F7
 (B)STRING_FONT=NORMAL_FONT

Designing the first application

Page 7

~F8
 (B)STRING_TEXTMENT=CENTRE
~F9
 (BO)STRING_ATTR.STRING_VISIBLE=TRUE
#END_STRING

There is a standard format of the resource files and are a number of rules on how
to construct a resource file. They are shown as follows:

! #XXX indicates the following resource details describe a certain UI object
while

! #END_XXX indicates the end of the object description where XXX
represents the name of a UI object.

! within the resource details of a UI object, it divides into certain fields. Each
field starts with an indicator, ~Fx, where x is the field number.

! the bracket letters represent different data type. For example,
S = string
B = BYTE
BO = BOOLEAN

! each UI object inside the resource file has an object ID that acts as an identity
within an application. So the object ID cannot be used repeatedly.

! spacing is not allowed within the resource file.
! different UI objects describe their resource details in a different format. The

total numbers of fields are also different. See the other document in the SDK
Resource File Format.pdf for more information.

! at the end of the resource file, remember to press enter if you use window’s
editor; otherwise the resource file cannot be compiled.

After the resource file is completed, resource compile (rcompile.exe) and binary-
to-hexadecimal utility are used to convert the resource file to a file format that can
be read the Helio VT-OS system.

Application Programming

VT - OS is a single-task and event driven operation system. Only one application
can run at a time. Each application is composed of several forms, which contain
certain UI objects to display. Before you start to write an application, you should
realize the operation of Helio system and then you can structure your own
application.

! Each application has a Main function which is inside main.c file. System
sends a launch code to start an application. Note that the purpose of Main
function is to receive launch codes and call AppLaunch function to handle
them. This function exists in ApLaunch.c file.

Designing the first application

Page 8

! Since VT - OS is event driven, an event loop exists in main.c file to get events
and then pass to event handler. Each application contains several forms.
Different forms should have their own event handler function in App.c.

! VT - OS application is stopped when it receives EVT_APP_STOP event.

Therefore, as a developer, the AppLaunch function and different event handler
functions of the forms in App.c must be required. For more information, there is a
document called App Design.pdf in our SDK.

During the programming, debugging is another important issue for a good
application or device driver. In the Helio developing environment, the only on
board debugging tool is by calling printf() to display the required data or memory
content to the terminal.

For optimized performance of the product, all the port from PDA to terminal is
disabled. In order to print out the useful data to terminal, SysEnableDebug() must
be called once before any calling to printf() function.

Please remember to free the COM port before launch the terminal to observe the
print out data. It is not uncommon that the V-Sync manager is occupying the
COM port after you download the application for debug.

Application Download

In order to download application or device driver to the Helio PDA, the following
steps are required.

1. The application source code should be built by using AppBuilder. Then, a
.APP file is generated out

2. Lauch Helio Desktop.
3. Select V-Sync from the menu and choose "Install Application to Helio"
4. Add the application to the list by pressing the [ADD] button. (You should

browse to the directory that contains the application.)
5. Perform a V-Sync.

Then you will see the application icon appears in the main menu. You can delete
the application in the System Setup->System Information->Delete Apps.

IMPORTANT: Remember to backup the data in Helio by V-Sync before
pilot run your application. It is always possible for an application or device
driver runs so far away.

	Designing the first application – Hello World
	Preface
	Introduction
	Requirements
	Environment settings
	Compiler & Linker
	Resource Compiler
	Application Builder
	Application Design
	Application Programming
	Application Download

