
User Interface Objects

Constructing an application starts by deciding the use of different UI resources. There are
many different UI resources in our system that can be used for designing different layouts
of the applications. The following table lists all UI resources provided by our system. In
this chapter, the resources are introduced. The behavior, different styles, user-input
parameters, comments and event flows are presented.

1. FORM

1a. Characteristics and Behavior

FORM resource is a container-type object. It acts like a container to contain other UI
objects. The UI objects, which are on the form, can be placed in all positions within the
bounds of their corresponding form object. Form resource can be viewed as one page of
an application and it is the basic unit in the structure of an application. By default, FORM
resources contain four different types: Background, Normal, Bitmap dialog and Non-
bitmap dialog. Base on the requirement of the applications to select one of the types.

1b. Event Flow

Form is the base of a number of UI objects in a form. All the UI events are passed to the
FormHandleEvent that is the function to handle events in a form before passing to the
specified object for further processing.

If an EVT_PEN_DOWN is received within the bounds of the active form, then the
FormHandleEvent will check whether the pen goes down onto an object. If it is, then the
event handler of the corresponding object is called to handle the EVT_PEN_DOWN.

If an EVT_PEN_MOVE or EVT_PEN_UP is received within the bounds of the active
form, then FormHandleEvent will pass the event to the handler function of the object that
has received the EVT_PEN_DOWN in previous time.

All other events, such as EVT_CONTROL_ENTER, EVT_LIST_ENTER and
EVT_MENU_EXIT, are all passed directly to corresponding event handler function for
further process.

1c. Data Structure

struct Form_Objects_List
{

ObjectID object_id;
BYTE object_type;

};
typedef struct Form_Objects_List FormObjectsList;

struct Form_Attr
{

BOOLEAN form_drawn;
BOOLEAN form_active;
BOOLEAN form_updated;
BOOLEAN form_save_behind;

};
typedef struct Form_Attr FormAttr;

/* FORM Structure */
struct _Form
{

Identification identification;
ObjectBounds bounds;
ObjectID form_focus;
BYTE form_style;
BYTE * form_dialog_title;
BitmapTemplate form_bitmap;
USHORT form_num_objects;
FormObjectsList * form_objects_list;
BitmapTemplate save_behind;
FormAttr form_attr;

};
typedef struct _Form Form;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

FORM, CONTROL, FIELD,
 LIST, MENU, SCROLLBAR,

TABLE, STRING, BITMAP and LINE.

bounds Screen relative coordinates of the top left corner of the form. The
bounds field contains the following parameters:

xcoord Screen relative X-coordinate of the object.
ycoord Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

form_focus Object ID of the relative object that has the focus in the particular
form.

form_style Style of the particular Form.
For example:
BACKGROUND ~ Background Form without any pre-designed

template.
NORMAL_FORM ~ A 160 x 160 background with default

template.
BITMAP_DIALOG ~Dialog with pre-design bitmap diagram on

the upper left corner.
NON_BITMAP_DIALOG ~ DIALOG without pre-design

diagram.

form_dialog_title Pointer to the title of the form. If text is NULL, the particular Form
is no label. Only Normal Form, Bitmap and Non-Bitmap Dialog
have text labels at the top of the Form.

form_bitmap Pointer to the Bitmap structure of the Form.
Normal Form and Bitmap Dialog have a predefined Bitmap
diagram on the upper left corner of the From.

form_num_objects Number of UI object contained in the Form.

form_objects_list Pointer to an array of objects contained in the Form. The structure
contains the following parameters:

object_id Object ID of the Form, specified by the resource
compiler.

object_type The type of the object within the Form.
For example:
CONTROL, FIELD, LIST,
MENU, SCROLLBAR, TABLE,
STRING, BITMAP, LINE
TEXTBOX.

save_behind Used to store the information of the Bitmap covered by the
specified object.

The structure contains the following parameters:
xcoord Screen relative X-coordinate of the top left corner

of the covered image.
ycoord Screen relative Y-coordinate of the top left corner

of the covered image.
width Width of the covered image.
height Height of the covered image.
compresed Indicate whether the Bitmap is compressed or not.
quantisation Number of quantization levels per pixel.
size Size (No. of bytes) of the Bitmap.
bitmap_data Pointer to the locations of storing the covered

image.

form_attr Attribute of the Form object. The from_attr field contains the
parameters form_drawn, form_active, form_updated,
form_save_behind.

form_drawn indicate whether the Form is drawn on
screen or not.

from_active indicate whether the Form is being used or
not.

from_updated indicate whether the Form is being updated
or not.

form_save_behind indicate whether other UI object is covered
by the Form or not.

1d. API Functions

The following API functions can be used to manipulate form object.

• FormAddOneObject
• FormCheckObjectExists
• FormCheckStyle
• FormDeleteAllFormObjects
• FormDeleteForm
• FormDispatchEvent
• FormDrawForm
• FormEraseForm
• FormGetActiveFormID
• FormGetActiveObject
• FormGetControlValue
• FormGetMenuID
• FormGetNumberOfObjects

• FormGetObjectBounds
• FormGetObjectPointer
• FormInitAllFormObjects
• FormInitForm
• FormPopupForm
• FormSetActiveForm
• FormSetControlGroupSelection
• FormSetDialogTitle
• FormSetEventHandler
• FormSetFormActiveObject
• FormSetObjectBounds
• FormSetObjectPosition

2. BITMAP

2a. Characteristics and Behavior

Bitmap object can be used for 2 purposes:

! predefined bitmap
! button with bitmap on it

For the use as a bitmap, the bitmap object is disabled and any pen action will not be
passed to the event handler function of the bitmap object.

For the use as a button, when the user press on the bitmap object with the pen, the bitmap
object either highlights or change to another bitmap (depends on the style of the bitmap
object) until the pen is lifted or is moved out of the bounds of the bitmap object.

2b. Event Flow

There are 6 events for are handled by the BitmapHandleEvent. They are:

• EVT_PEN_UP
• EVT_PEN_DOWN
• EVT_PEN_MOVE
• EVT_BITMAP_ENTER
• EVT_BITMAP_EXIT
• EVT_BITMAP_SELECT

Among those events, EVT_BITMAP_ENTER, EVT_BITMAP_EXIT and
EVT_BITMAP_SELECT are all generated by BitmapHandleEvent. The structures of the
events can be found in the document of UI Events.

Events that are passed
to BitmapHandleEvent

Actions to be taken by BitmapHandleEvent

EVT_PEN_DOWN At the start, the bitmap object is in IDLE state. If the position
of the pen is within the bounds, then EVT_BITMAP_ENTER
is sent.

EVT_BITMAP_ENTER The bitmap object is now in ENTER state. The bitmap object
is highlighted or another bitmap is pasted on it.

EVT_PEN_MOVE If it is now in ENTER state,
! if the pen is moved out of the bounds of the bitmap

object, then EVT_BITMAP_EXIT is sent.
! if the pen is still within the bounds, then nothing

happens.
If it is now in EXIT state,

! if the pen is moved back to and within the bounds
of the bitmap object, then EVT_BITMAP_ENTER
is sent.

! if the pen is still outside the bounds, then nothing
happens.

EVT_BITMAP_EXIT The bitmap object is now in EXIT state. The display of the
bitmap object is changed back to original one.

EVT_PEN_UP If it is still ENTER state now, then EVT_BITMAP_SELECT
is sent and the display of the bitmap object is back to normal.
But on the other hand, if it is EXIT state now, then state is
changed back to IDLE state.

2c. Data Structure

struct Bitmap_Attr
{

BOOLEAN bitmap_drawn;
BOOLEAN bitmap_enable;
BOOLEAN bitmap_active;
BOOLEAN bitmap_enter;
BOOLEAN bitmap_visible;

};

typedef struct Bitmap_Attr BitmapAttr;

/* BITMAP Structure */
struct _Bitmap
{

Identification identification;
BitmapTemplate bitmap_bitmap1;
BitmapTemplate bitmap_bitmap2;
ObjectBounds bounds;
ObjectBounds screen_bounds;
BYTE bitmap_style;
BitmapAttr bitmap_attr;

 };
typedef struct _Bitmap Bitmap;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

bitmap_bitmap1 Pointer to the Bitmap structure of the original Bitmap diagram.

bitmap_bitmap2 Pointer to the Bitmap structure of the secondary Bitmap diagram.
If the original Bitmap is clicked, the secondary Bitmap will
instead of the original and place on the screen.

bounds If the object is pasted within a table, then the bounds field
represents the Table relative coordinates of the top left corner of
the Bitmap. Otherwise represents the Screen relative coordinates
of the top left corner of the Bitmap.

The bounds field contains the following parameters:
xcoord Table / Screen relative X-coordinate of the object.
ycoord Table / Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

Table relative means the bounds is related to the specified table
object and the top left corner of bounds is relative to the top left
corner of the table cell that holds the bitmap object. These
parameters will only be concerned when the particular Bitmap
object is paste into a table.

screen_bounds Screen relative coordinates of the top left corner of the Bitmap. It
means that the top left corner of the bitmap object is relative to
the top left corner of the screen. The bounds field contains the
following parameters:

xcoord Screen relative X-coordinate of the object.
ycoord Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

bitmap_style Style of the particular Bitmap.

For example:
BITMAP_STYLE_0 ~ When the bitmap is clicked, the bitmap is

 Inverted.
BITMAP_STYLE_1~ When the bitmap is clicked, another is

pasted on it.

bitmap_attr Attribute of the Bitmap object. The bitmap_attr field contains the
parameters bitmap_drawn, bitmap_enable, bitmap_active,
bitmap_enter, bitmap_visible.

bitmap_drawn indicate whether the Bitmap is drawn on
screen or not.

bitmap_enable indicate whether the Bitmap response to
the pen action.

bitmap_active indicate whether the Bitmap is being used
or not.

bitmap_enter indicate whether the Bitmap is being
clicked or not.

bitmap_visible indicate whether the Bitmap is visible on
screen or not.

2d. API Functions

The following API functions can be used to manipulate bitmap object.

• BitmapDeleteBitmap
• BitmapDrawBitmap
• BitmapEraseBitmap
• BitmapGetAttribute
• BitmapGetBitmapBounds
• BitmapGetBitmapTemplate

• BitmapInitBitmap
• BitmapSetAttribute
• BitmapSetBitmapBounds
• BitmapSetBitmapTemplate

3. CONTROL

3a. Characteristics and Behavior

Control resource is a family of different types of UI resources in which there are 5
different types of control objects. They are button, repeat button, checkbox, popup trigger
and push button.

Button is a simple user interactive object that is existing in many operating systems. By
simple clicking on it, the button can trigger event in an application. When it is being
pressed, the button is inverted in color until the pen is lifted or the pen is moved out of
the bounds of the button. A button displays as a text label surrounded by a rectangular
frame. The frame has rounded corners with text has regular size. The text can be selected
displays at the left, right or in the middle of the frame by the setting of the
control_text_alignment attribute. If the text is too long to be fully displayed in the frame,
the characters of the text will be automatically minimized to make room to fit the
remainder into the frame. Dot sign will then be added to the end of the remained
characters.

Repeat button is also a button-type object. The difference between button and repeat
button is that user can trigger the button repeatedly by pressing on it continuously. When
it is being pressed, it is also inverted in color until the pen is not within the bounds of the
repeat button object. A repeat button is an arrow or an arrow in the middle and
surrounded by a rectangular frame. The frame has rounded corners. A good example for a
repeating button is the scroll arrow.

Popup Trigger is a button object. But when it is selected, then a pop up list of items is
displayed on the screen for users’ further selection. After selection, the pop up list is
erased and the original button-like popup trigger is redrawn again. A popup trigger
displays as a text label surrounded by a rectangular frame and an upside-down triangle on
the right hand side of the label. The frame has rounded corners with text has regular size.
The text can be selected displays at the left, right or in the middle of the frame depends
on the setting of the control_text_alignment attribute. If the text is too long to be fully
displayed in the frame, the characters of the text will be automatically minimized to make
room to fit the remainder into the frame. Dot sign will add to the end of the remained
characters.

Checkbox provides the ability for an application to show the checking of an option.
Checkbox has a setting – checked or unchecked. When the checkbox is selected once, the
setting of that checkbox is toggled from checked to unchecked or from unchecked to
checked according to the initial states of the setting. The state of the checkbox is present
as two different bitmaps. One is for checked state and the other is for unchecked state.
Check box is a small square control object and always appears with an optional text label
beside the box.

Push Button has the same behavior of the checkbox. But when push button is toggled,
the color of the push button is inverted. Push buttons display a text label surrounded by a
rectangular frame. The frame may have rounded corners depend on the subtype setting.
Text with regular size and if it is too long to be fully displayed in the frame, the
characters of the text will be automatically minimized to make room to fit the remainder
into the frame. Dot sign will add to the end of the remained characters. When push
buttons appear in a horizontal or vertical row with no pixels between the buttons. The
buttons share a common border so there appears to be one pixel line between two push
buttons.

Both the checkboxes and push buttons can be grouped together in their own kind and
distinguished by a unique ID number. In this mode of operation, only one of the
checkbox or push button can be checked at the same time.

3b. Event Flow

There are 8 events that are handled by the ControlHandleEvent. They are:

• EVT_PEN_UP
• EVT_PEN_DOWN
• EVT_PEN_MOVE
• EVT_CONTROL_ENTER
• EVT_CONTROL_EXIT
• EVT_CONTROL_REPEAT
• EVT_CONTROL_SELECT
• EVT_CONTROL_POP_SELECT

Among those events, EVT_CONTROL_ENTER, EVT_CONTROL_EXIT,
EVT_CONTROL_REPEAT, EVT_CONTROL_SELECT and EVT_BITMAP_SELECT
and EVT_CONTROL_POP_SELECT are all generated by ControlHandleEvent. The
structures of the events can be found in the document of UI Events.

Events that are passed to
ControlHandleEvent

Actions to be taken by ControlHandleEvent

EVT_PEN_DOWN At the start, the control object is in IDLE state. If the
position of the pen is within the bounds, then
EVT_CONTROL_ENTER is sent.

If it is now in POPUP state and the position of the pen is
within one of the items in the popup list, then
EVT_CONTROL_ENTER with the highlighted item is
sent.

EVT_CONTROL_ENTER The control object is now in ENTER state. The control
object is highlighted or another bitmap is pasted on it. It
depends on the characteristics of the type of control
object.
If it is a repeat button, then EVT_CONTROL_REPEAT is
sent and the timer for counting is reset.
If it is a popup trigger and the popup list is displayed, then
the item on the first pen down is highlighted.

EVT_PEN_MOVE If it is now in ENTER state,
! if the pen moves out of the bounds of the

control object (or the bounds of the item on the
first pen down in the popup list if the control
object is popup trigger), then
EVT_CONTROL_EXIT is sent.

! if the pen is still within the bounds of the
control object and it is a repeat button, then if
the timer reaches a predefined value,
EVT_CONTROL_REPEAT is sent again.
Otherwise, nothing happens.

! if the pen is still within the bounds of the
control object (or the bounds of the item on the
first pen down in the popup list if the control
object is popup trigger) and it is not a repeat
button, then nothing happens.

If it is now in EXIT state,
! if the pen moves back to and within the bounds

of the control object (or the bounds of the item
on the first pen down in the popup list if the
control object is popup trigger), then
EVT_CONTROL_ENTER is sent.

! if the pen is still outside the bounds (or the
bounds of the item on the first pen down in the
popup list if the control object is popup
trigger), then nothing happens.

EVT_CONTROL_EXIT The control object is now in EXIT state. The display of
the control object is changed back to original one. If it is a

popup trigger, the highlighted item will change back to
original status.

EVT_PEN_UP If it is in ENTER state and it is a popup trigger control
object, then EVT_CONTROL_POP_SELECT is sent with
the item number of the selected item. The popup list is
erased and the original popup trigger object is redrawn.
If it is still ENTER state and it is not a popup trigger, then
EVT_CONTROL_SELECT is sent and the display of the
control object is back to normal.
But on the other hand, if it is EXIT state now, then state is
changed back to IDLE state of the control object.

EVT_CONTROL_SELECT If it is a popup trigger, then popup list is displayed and the
control object is back to IDLE state.

3c. Data Structure

struct Control_Attr
{

BOOLEAN control_enable;
BOOLEAN control_drawn;
BOOLEAN control_save_behind;
BOOLEAN control_active;
BOOLEAN control_enter;
BOOLEAN control_enter1;
BOOLEAN control_enter2;
BOOLEAN control_visible;

};
typedef struct Control_Attr ControlAttr;

/* Structure: Control_Template_Button */
struct Control_Template_Button
{

USHORT button_radius;
BYTE button_color_on;
BYTE button_color_off;
BOOLEAN control_value;

};
typedef struct Control_Template_Button ControlTemplateButton;

/* Structure: Control_Template_PushButton */
struct Control_Template_PushButton

{
BYTE push_button_color_on;
BYTE push_button_color_off;
USHORT push_button_group_id;
BOOLEAN control_value;
USHORT push_button_radius;

};
typedef struct Control_Template_PushButton ControlTemplatePushButton;

/* Structure: Control_Template_RepeatButton */
struct Control_Template_RepeatButton
{
 USHORT repeat_count;
 BitmapTemplate repeat_bitmap;

};
typedef struct Control_Template_RepeatButton ControlTemplateRepeatButton;

/* Structure: Control_Template_CheckBox */
struct Control_Template_CheckBox
{

BitmapTemplate checkbox_bitmap1;
BitmapTemplate checkbox_bitmap2;
USHORT checkbox_group_id;
BOOLEAN control_value;

};
typedef struct Control_Template_CheckBox ControlTemplateCheckBox;

/* Structure: Control_Template_Popup_Trigger */
struct Control_Template_Popup_Trigger
{

USHORT popup_radius;
USHORT popup_num_objects;
BYTE ** popup_items_list;
BitmapTemplate save_behind;
ObjectBounds popup_arrow_down_bounds;
SHORT popup_selected_item;
SHORT popup_highlighted_item;
USHORT popup_max_num_item_display;
USHORT popup_current_num_item_display;
USHORT popup_top_item_num;
ObjectBounds popuped;
BOOLEAN control_value;
BOOLEAN popup_arrow_up;
BOOLEAN popup_arrow_down;

};
typedef struct Control_Template_Popup_Trigger ControlTemplatePopupTrigger;

/* Structure: _Control */
struct _Control
{

Identification identification;
BYTE * control_text;
ObjectBounds bounds;
void * control_template;
BYTE control_style;
BYTE control_subtype;
ControlAttr control_attr;

};
typedef struct _Control Control;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

control_text Pointer to the label of the control. If text is NULL, the particular
control is no label. Only buttons, push buttons and popup trigger
have text labels.

bounds If the object is pasted within a table, then the bounds field
represents the Table relative coordinates of the top left corner of
the Control object. Otherwise represents the Screen relative
coordinates of the top left corner of the Control object.

The bounds field contains the following parameters:
xcoord Table / Screen relative X-coordinate of the object.
ycoord Table / Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

screen_bounds Screen relative coordinates of the top left corner of the Control.
The bounds field contains the following parameters:

xcoord Screen relative X-coordinate of the object.
ycoord Screen relative Y-coordinate of the object.
width Width of the object.

height Height of the object.

control_template Pointer to the template structure of the selected Control object.
The control_template may pointed to one of the following
template structure:

• Control_Template_Button

The Control_Template_Button contains the following parameters:
button_radius The radius of the button edge. (This value

should set to 2 for gray design)
button_color_on The color of the button when it is being

pressed.
button_color_off The color of the button when it is not being

pressed.
control_value An On / Off value to show whether the

button is pressed or not.

• Control_Template_PushButton

The Control_Template_PushButton contains the following
parameters:
push_button_color The color of the push button when it is
_on being pressed.
push_button_color The color of the push button when it is not
_off being pressed.
push_button_group The group ID of the push buttons
_id
control_value An On / Off value to show whether the

push button is pressed or not.
push_button_radius The radius of the push button edge. (This

value should set to 2 for gray design)

• Control_Template_RepeatButton

The Control_Template_RepeatButton contains the following
parameters:
repeat_count A number to show when to send a

EvtControlRepeatEvent.
repeat_bitmap Pointer to the Bitmap structure of the

repeat button.

• Control_Template_CheckBox

The Control_Template_CheckBox contains the following
parameters:

checkbox_bitmap1 Pointer to the Bitmap structure of the check
box.

checkbox_bitmap2 Pointer to the Bitmap structure of the check
box.

checkbox_button The group ID of the check box.
_group_id
control_value An On / Off value to show whether the

check box is pressed or not.

• Control_Template_Popup_Trigger

The Control_Template_Popup_Trigger contains the following
parameters:
popup_radius The radius of the push button edge. (This

value should set to 2 for gray design)
popup_num_objects Number of items in the list.
popup_items_list Pointer pointed to the list of items in the

popup list.
save_behind Pointer pointed to the structure to store the

image that is being covered.
popup_arrow_up Screen relative bounds of the upper
_bounds left corner of the popup up arrow.
popup_arrow_down Screen relative bounds of the lower left
_bounds corner of the popup down arrow.
popup_selected Item number of the selection.
_item
popup_highlighted The number of the highlighted item.
_item
popup_max_num Maximum number of items displayed on
_item _display the list.
popup_current_num Number of items displayed on the list.
_item _display
popup_ top_ item Top item number of the popup list.
_num
popuped Pointer pointed to the structure to store the

region covered by the popup list.
control_value An On / Off value to show whether the

popup trigger is pressed or not.
popup_arrow_up Set this attribute to indicate the popup up

arrow is drawn on screen. (This attribute
need to be set, once the list cannot display
all items on the screen and more items
contain in the previous page of the list.)

popup_arrow_down Set this attribute to indicate the popup
down arrow is drawn on screen. (This
attribute need to be set, once the list cannot

display all items on the screen and more
items contain in the next page of the list.)

control_style Style of the particular Control.
For example: BUTTON, PUSH_BUTTON,

REPEAT_BUTTON, CHECKBOX,
POPUP_TRIGGER

control_subtype Pattern of the template of the control object.

text_alignment Alignment of the text in the frame.
For example: LEFT_ALIGN, CENTRE_ALIGN,

RIGHT_ALIGN

control_attr Attribute of the Control object. The control_attr field contains the
parameters control_enable, control_drawn, control_save_behind,
control_active, control_enter, control_enter1, control_enter2,
control_visible.

control_enable Indicate whether the Control response to
the pen action.

control_drawn Indicate whether the Control is drawn on
screen or not.

control_save_behind Indicate whether other UI object is covered
by the Control or not.

control_active Indicate whether the Control is being used
or not.

control_enter Indicate whether the Control is being
clicked or not.

control_enter1 Indicate whether the Popup up arrow is
being clicked or not.

control_enter2 Indicate whether the Popup down arrow is
being clicked or not.

control_visible Indicate whether the Control is visible on
screen or not.

3d. API Functions

The following API functions can be used to manipulate control object.

• ControlDeleteControl
• ControlDrawControl
• ControlEraseControl
• ControlGetAttributes

• ControlGetCheckedCheckbox
• ControlGetLabel
• ControlGetPushedPushButton
• ControlHighlightOneItem
• ControlHitControl
• ControlInitControl
• ControlPopupDeleteAllItems
• ControlPopupDeleteItem
• ControlPopupFindItemNum
• ControlPopupGetCurrentNumOfDisplayedItems
• ControlPopupGetPopupItem
• ControlPopupGetSelectedItem
• ControlPopupGetTopItemNumber
• ControlPopupGetTotalItems
• ControlPopupInsertItem
• ControlPopupPopupTrigger
• ControlPopupSetSelectedItem
• ControlPopupSetTotalItems
• ControlPopupTriggerClosePopupTrigger
• ControlSetAttributes
• ControlSetLabel
• ControlSetPopupScroll
• ControlUpdatePopupTrigger

4. FIELD

4a. Characteristics and Behavior

Field resource provides the ability for the application to input editable text. The text,
which is in the field object, can be displayed with multiple lines. There are also many
features that are implemented and supported by the field object.

They are:

! Drag-scrolling and Drag-selection
! CUT, PASTE and COPY
! Special keys – PAGE UP, PAGE DOWN, HOME, END and BACKSPACE
! Scrolling by scrollbar
! Indication of insertion point
! Switching between viewing mode and editing mode
! Protection by setting maximum number of characters

In order to give flexibility to application to filter the characters to a field object, the
routine for adding key-in character to the string of field object is separated from the
FieldHandleEvent. Therefore, the EVT_KEY with the visible character is sent to
application layer for further process and the FieldHandleEvent would not handle
EVT_KEY with visible character.

4b. Event Flow

There are 9 events that are handled by the FieldHandleEvent. They are:

• EVT_PEN_UP
• EVT_PEN_DOWN
• EVT_PEN_MOVE
• EVT_FIELD_ENTER
• EVT_FIELD_SELECT
• EVT_FIELD_CHANGED
• EVT_FIELD_MODIFIED
• EVT_FIELD_JOT_PASTE_STRING
• EVT_KEY

Among those events, FieldHandleEvent sends all EVT_FIELD_ENTER,
EVT_FIELD_CHANGED, EVT_FIELD_MODIFIED and EVT_FIELD_SELECT.
JotHandleEvent sends EVT_FIELD_JOT_PASTE_STRING to request pasting symbol
into a field object. The structures of the events can be found in the document of UI
Events.

Events that are passed to
FieldHandleEvent

Actions to be taken by FieldHandleEvent

EVT_PEN_DOWN At the start, the field object is in IDLE state. If the
position of the pen is within the bounds, then
EVT_FIELD_ENTER is sent.

EVT_FIELD_ENTER The field object is now in ENTER state. The insertion
point of the field object is set to display on the position of
the pen.

EVT_PEN_MOVE If it in now in ENTER state,
! when the pen moves around, the text between

the position of the first pen down and the
current position of the pen is highlighted. After
highlighting, the insertion point disappears.

! if the text in the field object is required to
scroll because of the drag-selection, then
EVT_FIELD_CHANGED is sent.

EVT_PEN_UP If it is in ENTER state, then when the pen is lifted,
EVT_FIELD_SELECT is sent. The field object is back to
IDLE state and the highlighted section of text is still on
the field object.

EVT_KEY with
BACKSPACE

The character on the left of the insertion point is deleted.
EVT_FIELD_CHANGED is sent.

EVT_KEY with CUT The text that is being highlighted is cut to clipboard.
EVT_FIELD_CHANGED is sent.

EVT_KEY with COPY The text that is being highlighted is copied to clipboard.

EVT_KEY with PASTE The text in clipboard is pasted to the field object at the
insertion point or to replace the highlighted section in the
field object.
EVT_FIELD_CHANGED is sent.

EVT_KEY with PAGE UP The text in the field object is scrolled up for one page and
the insertion point is re-positioned.

EVT_KEY with PAGE
DOWN

The text in the field object is scrolled down for one page
and the insertion point is re-positioned.

EVT_KEY with HOME The first line of text in the string of the field object is
displayed at the top of the field object and the insertion
point is positioned in the top-left corner of the field object.

EVT_KEY with END The last line of text in the string of the field object is
displayed at the bottom of the field object and the
insertion point is positioned in the bottom-right corner of
the field object.

EVT_KEY with UP
ARROW

The insertion point is moved up one line.

EVT_KEY with DOWN
ARROW

The insertion point is moved down one line.

EVT_KEY with LEFT
ARROW

The insertion point is moved to the left for one character
position. If the current position of the insertion point is
already in the left margin, then the insertion point will be
moved to the end of the previous line.

EVT_KEY with RIGHT
ARROW

The insertion point is moved to the right for one character
position. If the current position of the insertion point is

already in the right margin, then the insertion point will be
moved to the start of next line.

4c. Data Structure

/* Structure: Line Info */
struct _LineInfo
{

WORD start;
WORD length;

};
typedef struct _LineInfo LineInfo;

/* Structure: Field_Underlined_Section */
struct _FieldUnderlinedSection
{
 WORD field_underlined_start_char;

WORD field_underlined_length;
};
typedef struct _FieldUnderlinedSection FieldUnderlinedSection;

/* Structure: Field_Attr */
struct Field_Attr
{

BOOLEAN field_drawn;
BOOLEAN field_active;
BOOLEAN field_enable;
BOOLEAN field_dirty;
BOOLEAN field_highlight;
BOOLEAN field_insert_pt_visible;
BOOLEAN field_scrollbar;
BOOLEAN field_full_size;
BOOLEAN field_visible;

};
typedef struct Field_Attr FieldAttr;

/* Structure: _Field */
struct _Field
{

Identification identification;
ObjectBounds bounds;
ObjectBounds screen_bounds;
BYTE * field_string;
BYTE field_style;

BYTE field_back_line;
BYTE field_font_id;
BYTE field_font_color;
BYTE field_background_color;
BYTE field_text_alignment;
WORD field_max_chars;
WORD field_current_num_chars;
WORD field_total_num_lines;
WORD field_top_line_num;
WORD field_num_lines_displayed;
SHORT field_insert_pt_x;
SHORT field_insert_pt_y;
WORD field_insert_pt_char_pos;
BYTE field_insert_pt_movement;
WORD field_highlight_start_char;
WORD field_highlight_end_char;
WORD field_highlight_length;
USHORT field_num_underlined_section;
FieldUnderlinedSection **field_underlined_section;
LineInfo * field_lineinfo;
USHORT field_repeat_count;
FieldAttr field_attr;

};
typedef struct _Field Field;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

bounds If the object is pasted within a table, then the bounds field
represents the Table relative coordinates of the top left corner of
the Field object. Otherwise represents the Screen relative
coordinates of the top left corner of the Field object.

The bounds field contains the following parameters:
xcoord Screen / Table relative X-coordinate of the object.
ycoord Screen / Table relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

screen_bounds Screen relative coordinates of the top left corner of the Field. The

bounds field contains the following parameters:

xcoord Screen relative X-coordinate of the object.
ycoord Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

field_string Pointer pointed to the text string in the field object.

field_style Style of the particular Field.
For example: FIELD_STYLE_0 = No frame,

FIELD_STYLE_1 = frammed.

field_back_line Style of the lines under the field’s text.
For example: NO_LINE ~ Without lines under the text.

DOT_LINE ~ With dot lines under the text.
GRAY_LINE ~ With gray lines under the text.
(The color of the lines is predefined.)

field_font_id Font type of the field’s text.
For example: SMALL_FONT, MEDIUM_FONT and

LARGE_FONT

field_font_color Color of the field’s text.
For example: COLOR_WHITE, COLOR_GREY1,

COLOR_GREY2, COLOR_BLACK

field_background
_color

Background color of the field.
For example: COLOR_WHITE, COLOR_GREY1,

COLOR_GREY2, COLOR_BLACK

field_text
_alignment

Alignment of the text in the field.
For example: LEFT_ALIGN, CENTRE_ALIGN,

RIGHT_ALIGN

field_max_chars Maximum number of characters in the field object.

field_current_num
_chars

Current number of characters in the string displayed by the field
object; the null-terminator is excluded.

field_total_num
_lines

Total number of lines in the field object.

field_top_line_num Top line number in the displayed field.

field_num_lines
_displayed

Number of lines displayed in the field object.

field_insert_pt_x Column position of the insertion point.

field_insert_pt_y Row position of the insertion point.

field_insert_pt_
char_pos

The character poistion beside the insert point.

field_insert_pt_
movement

Movement direction in the field.
For example: NO_MOVEMENT, MOVE_UP,

MOVE_DOWN, MOVE_LEFT,
MOVE_RIGHT

field_highlight_
start_char

Starting character position of the current selection.

field_highlight_
end_char

Ending character position of the current selection.

field_highlight_
length

Length of the current selection. If the field_highlight_start_char
is equal to the field_highlight_end_char, there is no selection.

field_num_
underlined_section

Number of lines is being selected.

field_underlined_
section

Pointer to an arrau of the FieldUnderlinedSection structure. This
structure contains the following parameters:

field_underlined_start_char The character position of the first
character being underlined.

field_underlined_length The number of characters being
underlined.

field_lineinfo Pointer to an array of the LineInfo structures. This structure
contains the following parameters:

start The character position of the first character
displayed by a line.

length The number of characters displayed by a line.

field_repeat_count Number of lines repeated displays in the field object.

field_attr Attribute of the Field object. The field_attr field contains the
parameters field_drawn, field_active, field_enable, field_dirty,
field_highlight, field_insert_pt_visible, field_scrollbar,
field_full_size, field_visible.

field_drawn Indicate whether the Field is drawn on
screen or not.

field_active Indicate whether the Field is being used
or not.

field_enable Indicate whether the Field response to
the pen action.

field_dirty Indicate the field object has been changed.
(e.g. cut, paste)

field_highlight Indicate whether the field is highlighted or
not.

field_insert_pt Indicate whether the insert point of the
_visible field is visible or not.
field_scrollbar Indicate the particular field has a scrollbar.
field_full_ size Indicate the particular field with full size of

the table object.
field_visible Indicate whether the Field is visible on

screen or not.

4d. API Functions

The following API functions can be used to manipulate field object.

• FieldAddKeyInChar
• FieldCharPosToLineNum
• FieldDeleteField
• FieldDeleteString
• FieldDirty
• FieldDrawField
• FieldEraseField
• FieldGetAttribute
• FieldGetCurrentHighlightedSelection
• FieldGetDisplayRowNum
• FieldGetFieldBounds
• FieldGetFirstVisibleChar
• FieldGetFont
• FieldGetInsertPointPosition
• FieldGetLastVisibleChar
• FieldGetMaxNumChars
• FieldGetMaxNumLinesDisplay
• FieldGetNumBlankLines
• FieldGetNumOfChars
• FieldGetNumOfLinesDisplayed

• FieldGetScrollbarAttribute
• FieldGetTextPointer
• FieldGetTopLineNum
• FieldGetTotalNumOfLines
• FieldInitField
• FieldInsertString
• FieldPasteString
• FieldScrollField
• FieldSetAttribute
• FieldSetBounds
• FieldSetDirty
• FieldSetFont
• FieldSetHighlightSelection
• FieldSetInsertPointOff
• FieldSetInsertPointOn
• FieldSetInsertPointPositionByCharPos
• FieldSetInsertPointPositionByXY
• FieldSetMaxNumChars
• FieldSetScrollbarAttribute
• FieldSetText
• FieldSetTopLineNum
• FieldUndo

5. LINE

5a. Characteristics and Behavior

Line resource, as stated before, is an object that can provide the ability for application to
draw lines on the display. The application can select different thickness, color and length
of the line.

5b. Event Flow

This object is supposed to be used as a drawing on the display. Therefore, there is no
event associated to this line object.

5c. Data Structure

struct Line_Attr
{

BOOLEAN line_drawn;

BOOLEAN line_visible;
};
typedef struct Line_Attr LineAttr;

/* Structure: _Line */
struct _Line
{

Identification identification;
ObjectBounds bounds;
BYTE line_color;
BYTE line_style;
BYTE line_thick;
USHORT line_endpt_xpos;
USHORT line_endpt_ypos;
LineAttr line_attr;

};
typedef struct _Line Line;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

bounds The bounds field to represent the Screen relative coordinates of
the left hand side of the Line.

The bounds field contains the following parameters:
xcoord Screen relative X-coordinate of the object.
ycoord Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

line_color Color of the line object.
For example: COLOR_WHITE, COLOR_GREY1,

COLOR_GREY2, COLOR_BLACK

line_sytle Style of the line object.
For example: DOTTED_LINE, NON_DOTTED_LINE

line_thick Thickness of the line object.
For example: 1 = Single line, 2 = Double line and so on.

line_endpt_xpos Window relative x-coordinate of the end point.

line_endpt_ypos Window relative y-coordinate of the end point.

5d. API Functions

The following API functions can be used to manipulate line object.

• LineDeleteLine
• LineDrawLine
• LineEraseLine
• LineGetAttribute
• LineGetLineCharacteristics
• LineGetPosition
• LineInitLine
• LineSetAttribute
• LineSetLineCharacteristics
• LineSetPosition

6. LIST

6a. Characteristics and Behavior

List resource provides a way for the application to show a list of items for choices
vertically. The list object also provides 2 small arrows at the positions of the right margin
to the first and last visible choice. Whenever the item is being highlighted or the item is
already selected, the item is inverted in color.

Generally, there are 2 types of actions that are taken by the list object. They are the pen
down action on one of the visible choice and the pen down action on the small arrow. For
the case that the pen is on a visible choice, when the pen is on a choice, then the original
selected choice is un-highlighted and the new choice is highlighted. When the pen is
moved along the list of choices, the item under the pen is highlighted instead.

For the pen down on the arrow, the list is scrolled wither up or down. When the list is
scrolled up, the first visible choice of the current display will become the last choice of
the scrolled list. But if the number of choices in the list is not enough to do the scrolling,
then the first choice in the list object is displayed as the first visible choice on the display.
It is the same case as scrolling down.

There is something that is important to be highlighted in here. Two or more list object
can link together to form a large list object with several columns of visible choice. The

list objects can be arranged synchronously or asynchronously. Synchronous list objects
means that when pen down is on an item of a list object, then the same item in the other
list object is also highlighted at the same time. Asynchronous list objects means that there
can only be one highlighted choice in the list objects. If a choice is being highlighted in a
list object, all other visible choices in other list objects are un-highlighted.

6b. Event Flow

There are 7 events that are handled by the ListHandleEvent. They are:

• EVT_PEN_UP
• EVT_PEN_DOWN
• EVT_PEN_MOVE
• EVT_LIST_ENTER
• EVT_LIST_EXIT
• EVT_LIST_SELECT
• EVT_LIST_ARROW

Among those events, EVT_LIST_ENTER, EVT_LIST_EXIT, EVT_LIST_SELECT and
EVT_LIST_ARROW are all generated by ListHandleEvent. The structures of the events
can be found in the document of UI Events.

Events that are passed to
ListHandleEvent

Actions to be taken by ListHandleEvent

EVT_PEN_DOWN At the start, the list object is in IDLE state. If the position
of the pen is within the bounds, then EVT_LIST_ENTER
is sent.

EVT_LIST_ENTER The list object is now in ENTER state. If the position of
the pen while it is pen down is on the up arrow, then the
up arrow is inverted in color. If the position of the pen
while it is pen down is on the down arrow, then the down
arrow is inverted in color. If the position of the pen while
it is pen down is on one of the visible choice of list object,
then the previous selected item is unhighlighted and the
current selected choice is highlighted instead.

EVT_PEN_MOVE If it is now in ENTER state,
! If up or down arrow is being highlighted and

the pen is moved out of their bounds, then
EVT_LIST_EXIT is sent.

! If one of the choices is being highlighted and
the pen is moved within the bounds of the
visible choices, then corresponding choice is

highlighted.
! If one of the choices is being highlighted and

the pen is moved out of the bounds of all
visible choices, then EVT_LIST_EXIT is sent.

! If the pen is moved within the original
highlighted region, then nothing happens.

If it is now in EXIT state,
! If the pen is moved back to the region that was

highlighted, then EVT_LIST_ENTER is re-
sent again.

! If the pen is still out of the bounds of the
region that was highlighted, then nothing
happens.

EVT_LIST_EXIT The list object is changed to EXIT state now. All the
regions in the list object are unhighlighted.

EVT_PEN_UP If it is in ENTER state and the pen is lifted,
! If the highlighted region is up arrow, then

scrolling up is performed and the region is
unhighlighted. EVT_LIST_ARROW is sent.

! If the highlighted region is down arrow, then
scrolling down is performed and the region is
unhighlighted. EVT_LIST_ARROW is sent.

! If the highlighted region is one of the visible
choice, then the choice becomes the selection
of the list object and it keeps highlighted after
the pen is lifted from it. EVT_LIST_SELECT
with the item number of the selected choice is
sent.

6c. Data Structure

/* Structure: List_Attr */
struct List_Attr
{

BOOLEAN list_enable;
BOOLEAN list_drawn;
BOOLEAN list_active;
BOOLEAN list_set_scroll;
BOOLEAN list_enter1;
BOOLEAN list_enter2;
BOOLEAN list_visible;

BOOLEAN list_synchronous;
};
typedef struct List_Attr ListAttr;

/* Structure: _List */
struct _List
{

Identification identification;
ObjectBounds bounds;
ObjectBounds screen_bounds;
USHORT list_num_related_list;
ObjectID * list_related_list_id;
USHORT list_total_num_items;
USHORT list_max_num_items_on_display;
USHORT list_num_items_on_display;
USHORT list_top_item_num;
BYTE ** list_items;
SHORT list_item_height;
BYTE list_text_alignment;
SHORT list_selected_item;
SHORT list_highlighted_item;
BYTE list_style;
ObjectBounds list_arrow_up_bounds;
ObjectBounds list_arrow_down_bounds;
BOOLEAN list_arrow_up;
BOOLEAN list_arrow_down;
BYTE list_text_color;
BYTE list_bg_color;
BYTE list_text_font;
ListAttr list_attr;

};
typedef struct _List List;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

bounds If the object is pasted within a table, then the bounds field
represents the Table relative coordinates of the top left corner of
the List object. Otherwise represents the Screen relative
coordinates of the top left corner of the List object.

The bounds field contains the following parameters:
xcoord Screen / Table relative X-coordinate of the object.
ycoord Screen / Table relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

screen_bounds Screen relative coordinates of the top left corner of the List. The
bounds field contains the following parameters:

xcoord Screen relative X-coordinate of the object.
ycoord Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

list_num_related_
list

Number of list related to this list object.

list_related_list_id Pointer pointed to the Object Id of the related list object. This
field is used to allow one or more list objects work together
(Synchronous or Asynchronous).

list_total_num
_items

Number of items in the list.

list_max_num_
items_on_display

Maximum number of items displayed in the list.

list_num_items_on_
display

Current number of items displayed in the list.

list_top_item_num Top item number of the popup list.

list_items Pointer to an array of pointer to the text of the choices.

list_item_height Height of the list object.

list_text
_alignment

Alignment of the text in the list.
For example: LEFT_ALIGN, CENTRE_ALIGN,

RIGHT_ALIGN

list_selected_item Item number of the selection.

list_highlighted
_item

The number of the highlighted item.

list_style Style of the particular List.
For example: LIST_STYLE_0 ~ No frame around the list

object, and the whole line
will be highlighted.

LIST_STYLE_1 ~ With predefined frame
around the list object and
the whole line will be
highlighted.

LIST_STYLE_2 ~ With predefined frame
around the list object and
only the text will be
highlighted.

LIST_STYLE_3 ~ With predefined 3D frame
around the list object and
the whole line will be
highlighted.

LIST_STYLE_4 ~ With predefined 3D frame
around the list object and
only the text will be
highlighted.

LIST_STYLE_5 ~ No frame around the list
object, and the only the text
will be highlighted.

LIST_STYLE_6~ With predefined 3D frame
around the list object, user
can define the background
color and the whole line will
be highlighted.

LIST_STYLE_7~ Specify used in the
“Expense” application.

list_arrow_up_
bounds

Screen relative bounds of the upper left corner of the popup up
arrow.

list_arrow_down_
bounds

Screen relative bounds of the lower left corner of the popup up
arrow.

list_text_color Color of the list’s text.
For example: COLOR_WHITE, COLOR_GREY1,

COLOR_GREY2, COLOR_BLACK

list_bg_color Background color of the list.
For example: COLOR_WHITE, COLOR_GREY1,

COLOR_GREY2, COLOR_BLACK
list_text_font Font of the text.

For example: SMALL_FONT, MEDIUM_FONT and

LARGE_FONT

list_attr Attribute of the List object. The list_attr list contains the
parameters list_drawn, list_active, list_enable, list_synchronous,
list_set_scroll, list_enter1, list_enter2, list_visible.

list_drawn Indicate whether the List is drawn on
screen or not.

list_active Indicate whether the List is being used
or not.

list_enable Indicate whether the List response to
the pen action.

list_synchronous Indicate whether the list synchronous with
another list object or not.

list_set_scroll Indicate whether the list contains a
scrollbar or not.

list_enter1 Indicate whether the list’s up arrow is
clicked or not.

list_enter2 Indicate whether the list’s down arrow is
clicked or not.

list_visible Indicate whether the List is visible on
screen or not.

6d. API Functions

The following API functions can be used to manipulate list object.

• ListDeleteAllItems
• ListDeleteItem
• ListDeleteList
• ListDrawList
• ListEraseList
• ListGetAttribute
• ListGetHighlightedItem
• ListGetListBounds
• ListGetListItem
• ListGetMaxNumItemsDisplay
• ListGetNumItemsDisplay
• ListGetNumOfItems
• ListGetSelectedItem
• ListGetTopItemNum
• ListGetTotalItems
• ListHighlightOneItem

• ListInitList
• ListInsertItem
• ListRecalculateMaxNumItemsDisplay
• ListSearchSelectedItem
• ListSetAttribute
• ListSetFont
• ListSetHighlightedItem
• ListSetListBounds
• ListSetNumItemsDisplay
• ListSetScrollList
• ListSetSelectedItem
• ListSetTopItemNum
• ListSetTotalItems
• ListUpdateList

7. MENU

7a. Characteristics and Behavior

Menu object is actually a menu bar that is displayed on the screen when the menu button
is selected. The menu bar is a vertical list of choices and it is built from the bottom to the
top of the screen. As the menu bar is only a single column list of choices, therefore, the
total number of choices that a menu bar can handle is about 12. There is no scrolling
feature implemented in the menu object. After selection of one of the menu choice, the
menu bar is erased. Each application has different sets of menu names, within an
application, different views may have different menus. Copy, Cut and Paste are
commonly found in the menu bar.

7b. Event Flow

There are 7 events that are handled by the MenuHandleEvent. They are:

• EVT_PEN_UP
• EVT_PEN_DOWN
• EVT_PEN_MOVE
• EVT_MENU_ENTER
• EVT_MENU_EXIT
• EVT_MENU_SELECT_ITEM
• EVT_MENU_SELECT

Among those events, EVT_MENU_ENTER, EVT_MENU_EXIT and
EVT_MENU_SELECT_ITEM are all generated by MenuHandleEvent. The structures of
the events can be found in the document of UI Events.

Events that are passed to
MenuHandleEvent

Actions to be taken by MenuHandleEvent

EVT_MENU_SELECT When the menu button is selected, then
EVT_MENU_SELECT is sent. After
EVT_MENU_SELECT is received, then the menu bar is
drawn on the screen for further selection.

EVT_PEN_DOWN At the start, the menu object is in IDLE state. If the
position of the pen is within the bounds, then
EVT_MENU_ENTER is sent.

EVT_MENU_ENTER The menu object is now in ENTER state. If the position of
the pen while it is pen down is on one of the visible choice
of menu object, then the current selected choice is
highlighted

EVT_PEN_MOVE If it is now in ENTER state,
! If one of the choices is being highlighted and

the pen is moved within the bounds of the
visible choices, then corresponding choice is
highlighted.

! If one of the choices is being highlighted and
the pen is moved out of the bounds of all
visible choices, then EVT_MENU_EXIT is
sent.

If it is now in EXIT state,
! If the pen is moved back to one of the choices,

then EVT_MENU_ENTER is re-sent again.
! If the pen is still out of the bounds of the menu

bar, then nothing happens.

EVT_MENU_EXIT The menu object is changed to EXIT state now. All the
regions in the menu object are unhighlighted.

EVT_PEN_UP If it is in ENTER state and the pen is lifted,
! If the highlighted region is one of the visible

choice, then the choice becomes the selection

of the menu object.
EVT_MENU_SELECT_ITEM with the item
number of the selected choice is sent.

7c. Data Structure

/* Structure: Menu_Attr */
struct Menu_Attr
{

BOOLEAN menu_drawn;
};
typedef struct Menu_Attr MenuAttr;

/* Structure: _Menu */
struct _Menu
{

Identification identification;
ObjectBounds bounds;
BitmapTemplate save_behind;
USHORT menu_num_items;
USHORT menu_max_num_items;
SHORT menu_selected_item;
SHORT menu_highlighted_item;
BYTE ** menu_items;
MenuAttr menu_attr;

};
typedef struct _Menu Menu;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

bounds The bounds field represents the Screen relative coordinates of the
top left corner of the Menu.

The bounds field contains the following parameters:
xcoord Screen relative X-coordinate of the object.

ycoord Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

save_behind Used to store the information of the Bitmap covered by the
specified object.

The structure contains the following parameters:
xcoord Screen relative X-coordinate of the top left corner

of the covered image.
ycoord Screen relative Y-coordinate of the top left corner

of the covered image.
width Width of the covered image.
Height Height of the covered image.
compresed Indicate whether the Bitmap is compressed or not.
quantisation Number of quantization levels per pixel.
size Size (No. of bytes) of the Bitmap.
bitmap_data Pointer to the locations of storing the covered

image.

menu_num_items Number of items in the menu.

menu_max_num_
items

Maximum number of items displayed in the menu.

menu_selected_
item

Item number of the selection.

menu_highlighted
_item

Item number being highlighted.

menu_items Pointer to an array of pointer to the text of the choices.

menu_attr Pointer pointed to the MenuAttr structure, the structure of the
MenuAttr contains the parameters menu_drawn

menu_drawn Indicate whether the Menu is drawn on
screen or not.

7d. API Functions

The following API functions can be used to manipulate menu object.

• MenuCloseMenu

• MenuDeleteAllItems
• MenuDeleteItem
• MenuDeleteMenu
• MenuDrawMenu
• MenuGetAttrVisible
• MenuGetMenuItem
• MenuGetNumOfItems
• MenuGetTotalItems
• MenuInitMenu
• MenuInsertItem
• MenuSetAttrVisible
• MenuSetTotalItems

8. SCHEDULER LINE

8a. Characteristics and Behavior

Schline (Scheduler Line) is a particular object and provides the special feature for the
Scheduler application. The schline can be divided into 4 types of regions. The first and
second regions are the labels of the schline object, which displays the date and time
setting on the pre-design area. The third region are combined with 21 bitmaps diagram,
they are placed into 3 different columns to indicate the activity’s status of the specified
date. The fourth region are combined with 7 horizontal lines, they are placed into 7
different rows to indicate the status of the schedule.

8b. Event Flow

There are 7 events that are handled by the SchlineHandleEvent. They are:

• EVT_PEN_UP
• EVT_PEN_DOWN
• EVT_PEN_MOVE
• EVT_SCHLINE_ENTER
• EVT_SCHLINE_EXIT
• EVT_SCHLINE_SELECT

Among those events, EVT_SCHLINE_ENTER, EVT_SCHLINE_EXIT,
EVT_SCHLINE_SELECT and EVT_SCHLINE_REPEAT are all generated by
SchlineHandleEvent. The structures of the events can be found in the document of UI
Events.

Events that are passed to
SchlineHandleEvent

Actions to be taken by SchlineHandleEvent

EVT_PEN_DOWN At starting, the schline object is in IDLE state. If the
position of the pen is within the bounds, then
EVT_SCHLINE_ENTER is sent.

EVT_SCHLINE_ENTER The schline object is now in ENTER state.
! If the position of the pen is on one of the items in

region 3, then the corresponding item is
highlighted.

EVT_PEN_MOVE If it is now in ENTER state,
! if the pen is moved out of the bounds of the

schline object, then EVT_SCHLINE_EXIT is
sent.

! if the pen is still within the bounds, then nothing
happens.

If it is now in EXIT state,
! if the pen is moved back to and within the

bounds of the schline object, then
EVT_SCHLINE_ENTER is sent.

! if the pen is still outside the bounds, then nothing
happens.

EVT_SCHLINE_EXIT The schline object is now in EXIT state. The display of the
schline object is changed back to original one.

EVT_PEN_UP If it is still ENTER state now, then
EVT_SCHLINE_SELECT is sent and the display of the
schline object is back to normal.
But on the other hand, if it is EXIT state now, then state is
changed back to IDLE state.

9c. Data Structure

/* Structure: Schline_Attr */
struct Schline_Attr

{
BOOLEAN schline_drawn;
BOOLEAN schline_visible;
BOOLEAN schline_active;
BOOLEAN schline_enable;
BOOLEAN schline_enter;

};
typedef struct Schline_Attr SchlineAttr;

/* Structure: _Schline */
struct _Schline
{

Identification identification;
ObjectBounds bounds;
ObjectBounds ** schline_string;
ObjectBounds ** schline_line;
ObjectBounds ** schline_bitmap0;
ObjectBounds ** schline_bitmap1;
ObjectBounds ** schline_bitmap2;
BYTE * schline_bitmap_num;
BYTE ** schline_text;
BYTE schline_text_highlight;
SHORT schline_highlight_region;
BitmapTemplate ** schline_bitmap_ptr;
Boolean schline_mode;
SchlineAttr schline_attr;

};
typedef struct _Schline Schline;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

bounds The bounds field represents the Screen relative coordinates of the
top left corner of the Schline (Scheduler Line) Object.

The bounds field contains the following parameters:
xcoord Screen relative X-coordinate of the object.
ycoord Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

schline_string Store the location of the particular label (e.g. Mon 30, Tue 1)

schline_line Store the location of 7 scheduler lines.

schline_bitmap0 Location of the all bitmaps in column 1.

schline_bitmap1 Location of the all bitmaps in column 2.

schline_bitmap2 Location of the all bitmaps in column 3.

schline_bitmap_
num

Bitmap number or No bitmap (0) in the corresponding area.

schline_text Pointer reference to the address of the text.

schline_text_
highlight

To indicate the current date of the scheduler screen. The specify
date will be highlight on the screen.

schline_highlight_
region

To indicate the highlight region of the specified line.

schline_bitmap_ptr Pointer reference to the address of the particular bitmap diagram.

schline_mode To indicate the Hours mode of the system.

schline_attr Attribute of the Schline object. The schline_attr field contains the
parameters schline_drawn, schline_active, schline_enable,
schline_enter, schline_visible.

schline_drawn Indicate whether the Scheduler Line is
drawn on screen or not.

schline_visible Indicate whether the Scheduler Line is
visible on screen or not.

schline_active Indicate whether the Scheduler Line is
being used or not.

schline_enable Indicate whether the Scheduler Line
response to the pen action.

schline_enter Indicate whether the Scheduler Line is
entered by a pen or not.

8d. API Functions

The following API functions can be used to manipulate scheduler line object.

• SchlineDeleteSchline
• SchlineDrawSchline
• SchlineEraseSchline
• SchlineGetAttribute
• SchlineGetClickedRegion
• SchlineGetDateBitmaps
• SchlineGetDateText
• SchlineInitSchline
• SchlineSetAttribute
• SchlineSetHighlightText
• SchlineSetHourSettings
• SchlineSetLineBitmap
• SchlineSetLineLabel
• SchlineSetLineState

9. SCROLLBAR

9a. Characteristics and Behavior

Scrollbar is a support object and provides the scrolling feature for field and table object.
The scrollbar can be divided into 3 different regions. The region is the scrollbar arrow.
When user click on this region, the value of the scroll car (the colored box sit on the
scrollbar) is increased or decreased by one line accordingly. The arrows of the scrollbar
acts like repeat buttons. Therefore, the value of the scroll car is changing repeatedly while
the arrows are held down continuously.

The second region is the region above and below the scroll car. When users click on it,
the value of the scroll car is increased or decreased by the number of lines in one page.

The third region is the region of a scroll car itself. When user clicks on the scroll car and
drags it to move along the scrollbar, then value of the scroll car changes continuously to
reflect the current position of the line object and the table object.

The scrollbar would not update its display. Therefore, it is the job of the application to
update the line object or the table object and the scrollbar after
EVT_SCROLLBAR_REPEAT is received.

9b. Event Flow

There are 9 events that are handled by the ScrollbarHandleEvent. They are:

• EVT_PEN_UP
• EVT_PEN_DOWN
• EVT_PEN_MOVE
• EVT_SCROLLBAR_ENTER
• EVT_SCROLLBAR_REPEAT
• EVT_SCROLLBAR_EXIT
• EVT_SCROLLBAR_SELECT
• EVT_SCROLLBAR_ARROW_DELAY
• EVT_SCROLLBAR_ENTER_REPEAT

Among those events, ScrollbarHandleEvent sends EVT_SCROLLBAR_ENTER,
EVT_SCROLLBAR_EXIT, EVT_SCROLLBAR_SELECT,
EVT_SCROLLBAR_REPEAT, EVT_SCROLLBAR_ARROW_DELAY and
EVT_SCROLLBAR_ENTER_REPEAT. EVT_SCROLLBAR_ARROW_DELAY and
EVT_SCROLLBAR_ENTER_REPEAT are for the internal use of ScrollbarHandleEvent
to generate delay time for clicking on the scrollbar. The structures of the events can be
found in the document of UI Events.

Events that are passed to
ScrollbarHandleEvent

Actions to be taken by ScrollbarHandleEvent

EVT_PEN_DOWN At the start, the scrollbar object is in IDLE state. If the
position of the pen is within the bounds, then
EVT_SCROLLBAR_ENTER is sent.

EVT_SCROLLBAR_ENTER The scrollbar object is now in ENTER state.
! If the position of the pen is on one of the

arrow or on the scroll car, then the region is
highlighted.

! If the position of the pen is on one of the
arrow, then EVT_SCROLLBAR_REPEAT
with the old and new value of the scroll car
is sent.

EVT_PEN_MOVE If it is now in ENTER state,
! If previous highlighted region is arrow and

the position of the pen is now not in the
bounds of the arrow region, then
EVT_SCROLLBAR_EXIT is sent.

! If previous highlighted region is arrow and
the position of the pen is still within the
bounds of the arrow region, the new value is
calculated and
EVT_SCROLLBAR_REPEAT is sent.

! If previous highlighted region is the scroll
car and the position of the pen is within the
bounds of the scrollbar, then the new value
is calculated and
EVT_SCROLLBAR_REPEAT is sent.

! If previous highlighted region is the scroll
car and the position of the pen is out of the
bounds of the scrollbar, then
EVT_SCROLLBAR_EXIT is sent.

If it is now in EXIT state,
! If the pen is moved back to the previous

highlighted region, then new value is
calculated and
EVT_SCROLLBAR_REPEAT is re-sent
again.

! If the pen is still out of the bounds of the
previous highlighted region, then nothing
happens.

EVT_SCROLLBAR_EXIT The scrollbar object is changed to EXIT state now. All
the regions in the scrollbar object are unhighlighted.

EVT_PEN_UP If it is in ENTER state and the pen is lifted, all
highlighted regions are unhighlighted and
EVT_SCROLLBAR_SELECT with the current value
of the scroll car is sent.
If it is in the EXIT state, then the scrollbar object
returns to IDLE state.

EVT_SCROLLBAR_REPEAT EVT_SCROLLBAR_ARROW_DELAY or
EVT_SCROLLBAR_ENTER_REPEAT (the sent-
event depends on the clicked region) is sent to
introduce a time delay between the first and second
EVT_SCROLLBAR_REPEAT if the first
EVT_SCROLLBAR_REPEAT is received. After a
certain time delay, EVT_SCROLLBAR_REPEAT is
sent periodically.

9c. Data Structure

struct Scrollbar_Attr
{

BOOLEAN scrollbar_drawn;

BOOLEAN scrollbar_active;
BOOLEAN scrollbar_visible;
BOOLEAN scrollbar_enable;
BOOLEAN scrollbar_enter;
BOOLEAN scrollbar_enter1;
BOOLEAN scrollbar_enter2;

};
typedef struct Scrollbar_Attr ScrollbarAttr;

struct _Scrollbar
{

Identification identification;
ObjectBounds bounds;
USHORT scrollbar_repeat_count;
BitmapTemplate scrollbar_arrow1;
BitmapTemplate scrollbar_arrow2;
WORD scrollbar_max;
WORD scrollbar_min;
WORD scrollbar_value;
WORD scrollbar_old_value;
WORD scrollbar_pagesize;
WORD scrollbar_draw_pagesize;
WORD scrollbar_total_num_lines;
BYTE scrollbar_type;
BYTE scrollbar_style;
SHORT scrollbar_save_pos_x;
SHORT scrollbar_save_pos_y;
BYTE scrollbar_clicked_region;
BTYE * scrollbar_text;
ScrollbarAttr scrollbar_attr;

 };
typedef struct _Scrollbar Scrollbar;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

bounds The bounds field represents the Screen relative coordinates of the
top left corner of the Scrollbar.

The bounds field contains the following parameters:

xcoord Screen relative X-coordinate of the object.
ycoord Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

scrollbar_repeat
_count

Number of lines repeated displays in the field object.

scrollbar_arrow1 Pointer pointed to the template structure of the scroll up arrow.
The structure contains the following parameters:

xcoord Screen relative X-coordinate of the scroll up
arrow.

ycoord Screen relative Y-coordinate of the scroll down
arrow.

width Width of the scroll up arrow.
height Height of the scroll down arrow.
compresed Indicate whether the Bitmap is compressed or not.
quantisation Number of quantization levels per pixel.
size Size (No. of bytes) of the scroll up arrow.
bitmap_data Pointer to the locations of storing the diagram of

the scroll up arrow.

scrollbar_arrow2 Pointer pointed to the template structure of the scroll down arrow.
The structure contains the following parameters:

xcoord Screen relative X-coordinate of the top left corner
of the scroll down arrow.

ycoord Screen relative Y-coordinate of the top left corner
of the scroll down arrow.

width Width of the scroll down arrow.
height Height of the scroll down arrow.
compresed Indicate whether the Bitmap is compressed or not.
quantisation Number of quantization levels per pixel.
size Size (No. of bytes) of the scroll down arrow.
bitmap_data Pointer to the locations of storing the diagram of

the scroll down arrow.

scrollbar_max Position of the scroll car when the scrollbar is at the bottom.
To compute this value, use the formula:
Max value = Number of lines – Page size + Overlap value

scrollbar_min Position of the scroll car when the scrollbar is at the top. By
default this value should be 0.

scrollbar_value Current value of the scrollbar.

scrollbar_old_value Previous value of the scrollbar.

scrollbar_pagesize Number of lines to scroll when users scrolls one page.

scrollbar_draw_
pagesize

Draw purpose only.

scrollbar_total_
num_lines

Total number of lines in the scrollbar.

scrollbar_type Indicate the type of the scrollbar.
For example: SCROLLBAR_0 = Scrollbar with scroll

arrow on both sides.
SCROLLBAR_1 = Scrolled control bar
type 1, used in “Voice Memo” application.
(If the scroll car is shifted right, the region
on the left hands side of the car will then be
highlighted).
SCROLLBAR_2 = Scrolled control bar
type 2 (If the scroll car is shifted right, the
region on the left hands side of the car will
not be highlighted).
SCROLLBAR_3 = Specify used in
“System Setup” application.

scrollbar_style Indicate is a horizontal or vertical bar.
For example: VERTICAL or HORIZONTAL.

scrollbar_save_
pos_x

Save the window relative x-coordinate of the scrollbar.

scrollbar_save_
pos_y

Save the window relative y-coordinate of the scrollbar.

scrollbar_clicked_
region

Indicate the region clicked by the user.
For example:
SCROLL_NOT_HITTED ~ Not be clicked,
SCROLL_UP_ARROW ~ To indicate on the upper

 arrow of the scrollbar.
SCROLLBAR_UP_REGION ~ To indicate below the

 upper arrow and above the
 scroll car.

SCROLLCAR_REGION ~ To indicate on the scroll
 car area.

SCROLLBAR_DOWN_REGION ~ To indicate below the

 scroll car and above the
 lower arrow.

SCROLL_DOWN_ARROW ~ to indicate on the lower
 arrow of the scrollbar.

scrollbar_text Pointer to the text of the particular scrollbar. (Used by System Set
up application)

scrollbar_attr Attribute of the Scrollbar object. The scrollbar_attr field contains
the parameters scrollbar_drawn, scrollbar_active,
scrollbar_enable, scrollbar_enter, scrollbar_enter1,
scrollbar_enter2, scrollbar_visible.

scrollbar_drawn Indicate whether the Scrollbar is
drawn on screen or not.

scrollbar_active Indicate whether the Scrollbar is
being used or not.

scrollbar_enable Indicate whether the Scrollbar
response to the pen action.

scrollbar_enter Indicate whether the Scrollbar is
entered by the pen or not.

scrollbar_enter1 Indicate whether the scrollbar’s up
arrow is clicked or not.

scrollbar_enter2 Indicate whether the scrollbar’s
down arrow is clicked or not.

scrollbar_visible Indicate whether the Scrollbar is
visible on screen or not.

9d. API Functions

The following API functions can be used to manipulate scrollbar object.

• ScrollbarDeleteScrollbar
• ScrollbarDrawScrollbar
• ScrollbarEraseScrollbar
• ScrollbarGetScrollbar
• ScrollbarGetScrollbarText
• ScrollbarGetScrollbarVisible
• ScrollbarHardButtonSetScrollbar
• ScrollbarInitScrollbar
• ScrollbarSetScrollbar
• ScrollbarSetScrollbarDrawPagesize
• ScrollbarSetScrollbarText

• ScrollbarSetScrollbarType
• ScrollbarSetScrollbarVisible

10. STRING

10a. Characteristics and Behavior

String resource is used for displaying non-editable text of the screen. The object provides
the ability for application to align the text on the string to left, center and right.

10b. Event Flow

String object is used for display purpose only. Therefore, there is response to any pen
action on a string object.

10c. Data Structure

struct String_Attr
{

BOOLEAN string_drawn;
BOOLEAN string_visible;

};
typedef struct String_Attr StringAttr;

struct _String
{

Identification identification;
ObjectBounds bounds;
ObjectBounds screen_bounds;
BYTE string_color;
BYTE string_bg_color;
BYTE string_style;
BYTE * string_text;
BYTE text_alignment;
BYTE text_font;
StringAttr string_attr;

};
typedef struct _String String;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

bounds If the object is pasted within a table, then the bounds field
represents the Table relative coordinates of the top left corner of
the String object. Otherwise represents the Screen relative
coordinates of the top left corner of the String object.

The bounds field contains the following parameters:
xcoord Screen / Table relative X-coordinate of the object.
ycoord Screen / Table relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

screen_bounds Screen relative coordinates of the top left corner of the String.
The bounds field contains the following parameters:

xcoord Screen relative X-coordinate of the object.
ycoord Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

string_color Color of the text.
For example: COLOR_WHITE, COLOR_GREY1,

COLOR_GREY2, COLOR_BLACK

string_bg_color Background color of the string.
For example: COLOR_WHITE, COLOR_GREY1,

COLOR_GREY2, COLOR_BLACK

string_style Style of the particular String.
For example: STRING_STYLE_0 = Text only, no frame around

the string object,
STRING_STYLE_1 = With predefined frame
around the string object.
STRING_STYLE_2 = With predefined 3D frame
around the string object. (e.g. the calculator
display screen)
STRING_STYLE_3= Particular style used on the
application title.
STRING_STYLE_4= Specify used in the
“Anniversaries” application.
STRING_STYLE_5 = Specify used in the
“Scheduler” application.

string_text Pointer to the text.

text_alignment Alignment of the text in the string.
For example: LEFT_ALIGN, CENTRE_ALIGN,

RIGHT_ALIGN

text_font Font of the text.
For example: SMALL_FONT, MEDIUM_FONT and

LARGE_FONT

string_attr Pointer pointed to the StringAttr structure, the structure of the
StringAttr contains the parameters string_drawn and
string_visible.

string_drawn Indicate whether the String is drawn on
screen or not.

string_visible Indicate whether the String is visible on
screen or not.

10d. API Functions

The following API functions can be used to manipulate string object.

• StringDeleteString
• StringDrawString
• StringEraseString
• StringGetAttribute
• StringGetText
• StringInitString
• StringSetAttribute
• StringSetText

11. TABLE

10a. Characteristics and Behavior

Table object provides a best way for the application to organize the layout of the
application properly. Application can have more spaces virtually by placing UI objects or

text in cells of a table object and by using scrollbar to scroll the objects up or down. This
feature gives flexibility to the whole PDA developing environment.

There are different types of things that can be placed in a cell of a table object. They are
text, value, and UI objects. Cells can be used to store text or value. Both text and value
are displayed in a cell as a text, but the value can be used for calculation in some
applications. In addition, different UI objects can be placed in cells of table, but the size
of the UI object must be smaller than the size of the table object.

There are two selecting modes when user clicks on the cell that stores text or value. One
mode of selection is that the text in the cell will be unhighlighted back after the pen is
lifted. The other mode of selection is that the text in the cell will stay highlighted after the
pen is lifted from the cell. The second mode of selection provides the effect of selecting
and deselecting. It is quite useful for some application.

By default, table resources contain three different types: 0 = No line between the bounds,
1 = with vertical lines in the table and 2 = with vertical and horizontal lines in the table.
User can base on the requirement of the applications to select the type.

11b. Event Flow

There are 6 events that are handled by the TableHandleEvent. They are:

• EVT_PEN_UP
• EVT_PEN_DOWN
• EVT_PEN_MOVE
• EVT_TABLE_ENTER
• EVT_TABLE_EXIT
• EVT_TABLE_SELECT

Among those events, EVT_TABLE_ENTER, EVT_TABLE_EXIT and
EVT_TABLE_SELECT are all generated by TableHandleEvent. The structures of the
events can be found in the document of UI Events.

Events that are passed to
TableHandleEvent

Actions to be taken by TableHandleEvent

EVT_PEN_DOWN At the start, the table object is in IDLE state. If the
position of the pen is within the bounds of one of the
cell that contains text or value, then
EVT_TABLE_ENTER is sent. Otherwise, nothing
happens.

EVT_TABLE_ENTER The table object is now in ENTER state. The cell the
pen is on is highlighted.

EVT_PEN_MOVE If it is now in ENTER state,
! If the pen is out of the bounds of the cell that

was highlighted, then EVT_TABLE_EXIT is
sent.

! If the pen is still within the bounds of the cell
that was highlighted, then nothing happens.

If it is now in EXIT state,
! If the pen is moved back to the previous

highlighted cell, then EVT_TABLE_ENTER
is re-sent again.

! If the pen is still out of the bounds of the
previous highlighted cell, then nothing
happens.

EVT_TABLE_EXIT The table object is changed to EXIT state now. The cell
that was highlighted in the table object is unhighlighted.

EVT_PEN_UP If it is in ENTER state and the pen is lifted, the cell is
highlighted or unhighlighted depending on the mode of
selection of the table object. The table object returns to
IDLE mode.
If it is in the EXIT state, then the table object returns to
IDLE state.

11c. Data Structure

struct Table_Attr
{

BOOLEAN table_drawn;
BOOLEAN table_scrollbar;
BOOLEAN table_enable;
BOOLEAN table_active;
BOOLEAN table_enter;
BOOLEAN table_visible;
BOOLEAN table_highlight_enable;

};
typedef struct Table_Attr TableAttr;

/* Structure: Table_Items */
struct Table_Items
{

BYTE table_data_type;
ObjectID table_item_ui_id;
BYTE table_font;
WORD table_value;
BYTE table_display_alignment;
BYTE table_text_color;
BYTE table_text_bg_color;
BOOLEAN table_cell_highlight;
BOOLEAN table_cell_has_bitmap;

 BYTE * table_text;
};
typedef struct Table_Items TableItems;

/* Structure: _Table */
struct _Table
{

Identification identification;
ObjectBounds bounds;
USHORT table_num_column;
USHORT table_num_row;
USHORT table_current_row;
USHORT table_current_col;
TableItems ** table_item_ptr;
SHORT * table_column_width;
SHORT * table_row_height;
USHORT table_num_col_display;
USHORT table_num_row_display;
USHORT table_top_row_num;
USHORT table_left_col_num;
BYTE table_style;
BYTE table_bg_color;
BitmapTemplate table_cell_bitmap;
TableAttr table_attr;

};
typedef struct _Table Table;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

bounds The bounds field represents the table relative coordinates of the

top left corner of the Table.

The bounds field contains the following parameters:
xcoord Screen relative X-coordinate of the object.
ycoord Screen relative Y-coordinate of the object.
width Width of the object.
height Height of the object.

table_num_column Total number of columns in the table.

table_num_row Total number of row in the table.

table_current_row Row of the table set to current. (Row number start from 0)

table_current_col Column of the table set to current. (Column number start from 0)

table_item_ptr Pointer to an array of the Table_Items structures. This structure
contains the following parameters:

table_data_type Data type of the item. (e.g. 0 = Text, 1 =
Value / Number or 2 = UI Object)

table_item_ui_id If the item is UI object, then the object ID
of the object is placed in here, Otherwise,
Null is placed instead

table_font Font size of the text in the table object.
table_value Value / number of the item.
table_display_ Alignment of the text in the table.
alignment For example: LEFT_ALIGN,

CENTRE_ALIGN,
RIGHT_ALIGN

table_text_color Color of the text.
For example: COLOR_WHITE,

COLOR_GREY1,
COLOR_GREY2,
COLOR_BLACK

table_text_bg_ Background color of the table.
color For example: COLOR_WHITE,

COLOR_GREY1,
COLOR_GREY2,
COLOR_BLACK

table_cell_highlight Indicate the specified cell is highlighted.
table_cell_has_ Indicate the specified cell has a bitmap
bitmap placed on it.
table_text Pointer to the text.

table_column_
width

Pointer to a list of column width.

table_row_
height

Pointer to a list of row height.

table_num_col_
display

Number of column on display.

table_num_row_
display

Number of row on display.

table_top_row_
num

Row number of the top row that is on display.

table_left_col_
num

Column number of the left column that is on display.

table_style Style of the particular Table.
For example: TABLE_STYLE_0 ~ No line in the bounds,

TABLE_STYLE_1 ~ with vertical lines in the
table,

TABLE_STYLE_2 ~ with vertical and horizontal
lines in the table

table_bg_color Background color of the table.
For example: COLOR_WHITE, COLOR_GREY1,

COLOR_GREY2, COLOR_BLACK

table_cell_bitmap Pointer pointed to the template structure of the Bitmap diagram in
the specified cell. The structure contains the following
parameters:

xcoord Screen relative X-coordinate of the Bitmap.
ycoord Screen relative Y-coordinate of the Bitmap.
width Width of the Bitmap.
Height Height of the Bitmap.
compresed Indicate whether the Bitmap is compressed or not.
quantisation Number of quantization levels per pixel.
size Size (No. of bytes) of the Bitmap.
bitmap_data Pointer to the locations of storing the diagram.

table_attr Pointer pointed to the TableAttr structure, the structure of the
TableAttr contains the parameters table_drawn, table_scrollbar,
table_enable, table_active, table_enter, table_visible,
table_highlight_enable.

table_drawn Indicate whether the Table is drawn on
screen or not.

table_scrollbar Indicate whether the table contains a
scrollbar or not.

table_enable Indicate whether the table is already
enabled on the display or not.

table_active Indicate whether the table is active on the
display or not.

table_enter Indicate whether the specified cell is
entered by a pen or not.

table_visible Indicate whether the Table is visible on
screen or not.

table_highlight Indicate the text / data in the cell is
enable highlighted or not. When the pen is clicked

on the corresponding region.

11d. API Functions
The following API functions can be used to manipulate table object.

• TableCheckCellHasBitmap
• TableCheckCellHighlight
• TableCheckHighlightEnable
• TableDeleteTable
• TableDrawTable
• TableEnableTable
• TableEraseTable
• TableGetAttributes
• TableGetCellBounds
• TableGetClickedCell
• TableGetColumnWidth
• TableGetItemText
• TableGetItemType
• TableGetItemValue
• TableGetNumOfColumns
• TableGetNumOfRows
• TableGetNumOfRowsDisplayed
• TableGetRowColOfSelection
• TableGetRowHeight
• TableGetTableBounds
• TableGetTopRowNum
• TableInitTable
• TableSetAttributes
• TableSetBounds
• TableSetCellHasBitmap
• TableSetColumnWidth

• TableSetHighlightCell
• TableSetHighlightEnable
• TableSetItemText
• TableSetItemType
• TableSetItemValue
• TableSetRowHeight
• TableSetTopRowNum
• TableUpdateNumRowDisplay
• TableUpdateObjectScreenBounds
• TableUpdateTable

12. TEXTBOX

12a. Characteristics and Behavior

Textbox resource provides the ability for the application to input editable text. The text,
which is in the textbox object, can only be displayed with one single line. It is the main
difference between field object and text object. There are also many features that are
implemented and supported by the textbox object.

They are:

! Drag-scrolling and Drag-selection
! CUT, PASTE and COPY
! Special keys – HOME, END and BACKSPACE
! Indication of insertion point
! Switching between viewing mode and editing mode
! Protection by setting maximum number of characters

It is the same as field object. In order to give flexibility to application to filter the
characters to a textbox object, the routine for adding key-in character to the string of
textbox object is separated from the TextboxHandleEvent. Therefore, the EVT_KEY with
the visible character is sent to application layer for further process and the
TextboxHandleEvent would not handle EVT_KEY with visible character.

12b. Event Flow

There are 6 events that are handled by the TextboxHandleEvent. They are:

• EVT_PEN_UP
• EVT_PEN_DOWN
• EVT_PEN_MOVE

• EVT_TEXTBOX_ENTER
• EVT_TEXTBOX_SELECT
• EVT_KEY
• EVT_TEXTBOX_CHANGED
• EVT_TEXTBOX_MODIFIED
• EVT_TEXTBOX_JOT_PASTE_STRING

Among those events, TextboxHandleEvent sends all EVT_TEXTBOX_ENTER,
EVT_TEXTBOX_MODIFIED, EVT_TEXTBOX_CHANGED and
EVT_TEXTBOX_SELECT. JotHandleEvent sends
EVT_TEXTBOX_JOT_PASTE_STRING to request pasting symbol onto textbox object.
The structures of the events can be found in the document of UI Events.

Events that are passed to
TextboxHandleEvent

Actions to be taken by TextboxHandleEvent

EVT_PEN_DOWN At the start, the textbox object is in IDLE state. If the
position of the pen is within the bounds, then
EVT_TEXTBOX_ENTER is sent.

EVT_TEXTBOX_ENTER The textbox object is now in ENTER state. The insertion
point of the textbox object is set to display on the position
of the pen.

EVT_PEN_MOVE If it in now in ENTER state,
! when the pen moves around, the text between

the position of the first pen down and the
current position of the pen is highlighted. After
highlighting, the insertion point disappears.

! when the pen moves to the left or right of the
textbox, the text in the textbox will scroll to
left or right accordingly.

EVT_PEN_UP If it is in ENTER state, then when the pen is lifted,
EVT_TEXTBOX_SELECT is sent. The textbox object is
back to IDLE state and the highlighted section of text is
still on the textbox object.

EVT_KEY with
BACKSPACE

The character on the left of the insertion point is deleted.
EVT_TEXTBOX_CHANGED is sent.

EVT_KEY with CUT The text that is being highlighted is cut to clipboard.
EVT_TEXTBOX_CHANGED is sent.

EVT_KEY with COPY The text that is being highlighted is copied to clipboard.

EVT_KEY with PASTE The text in clipboard is pasted to the textbox object at the
insertion point or to replace the highlighted section in the
textbox object.
EVT_TEXTBOX_CHANGED is sent.

EVT_KEY with HOME The first line of text in the string of the textbox object is
displayed at the top of the textbox object and the insertion
point is positioned in the top-left corner of the textbox
object.

EVT_KEY with END The last line of text in the string of the textbox object is
displayed at the bottom of the textbox object and the
insertion point is positioned in the bottom-right corner of
the textbox object.

EVT_KEY with LEFT
ARROW

The insertion point is moved to the left for one character
position. If the current position of the insertion point is
already in the left margin, then the insertion point will be
moved to the end of the previous line.

EVT_KEY with RIGHT
ARROW

The insertion point is moved to the right for one character
position. If the current position of the insertion point is
already in the right margin, then the insertion point will be
moved to the start of next line.

12c. Data Structure

/* Structure: Textbox_Attr */
struct Textbox_Attr
{

BOOLEAN textbox_drawn;
BOOLEAN textbox_active;
BOOLEAN textbox_enable;
BOOLEAN textbox_dirty;
BOOLEAN textbox_highlight;
BOOLEAN textbox_insert_pt_visible;
BOOLEAN textbox_visible;

};
typedef struct Textbox_Attr TextboxAttr;

/* Structure: _Textbox */
struct _Textbox
{

Identification identification;
ObjectBounds bounds;
ObjectBounds screen_bounds;
BYTE * textbox_string;
BYTE textbox_style;
BYTE textbox_back_line;
BYTE textbox_font_id;
BYTE textbox_font_color;
BYTE textbox_background_color;
WORD textbox_max_chars;
WORD textbox_current_num_chars;
WORD textbox_left_char_pos;
WORD textbox_right_char_pos;
WORD textbox_num_chars_displayed;
SHORT textbox_insert_pt_x;
SHORT textbox_insert_pt_y;
WORD textbox_insert_pt_char_pos;
BYTE textbox_insert_pt_movement;
WORD textbox_highlight_start_char;
WORD textbox_highlight_end_char;
WORD textbox_highlight_length;
USHORT textbox_repeat_count;
TextboxAttr textbox_attr;

};
typedef struct _Textbox Textbox;

The following table shows all the parameters of the relative UI objects and discusses
the function of them.

Parameters Function
identification Information to identification the object:

• ui_object_id is the object ID of the object.
• ui_object_type is the object type

bounds If the object is pasted within a table, then the bounds textbox
represents the table relative coordinates of the top left corner
of the Textbox. Otherwise represents the Screen relative
coordinates of the top left corner of the Textbox.

The bounds textbox contains the following parameters:
xcoord Screen / Table relative X-coordinate of the
object.
ycoord Screen / Table relative Y-coordinate of the
object.
width Width of the object.

height Height of the object.

screen_bounds Screen relative coordinates of the top left corner of the
Textbox. The bounds textbox contains the following
parameters:

xcoord Screen relative X-coordinate of the object.
ycoord Screen relative Y-coordinate of the object.
width Width of the object.
Height Height of the object.

textbox_string Pointer pointed to the text string in the textbox object.

textbox_style Style of the particular Textbox.
For example: TEXTBOX_STYLE_0 = No frame around the

 textbox object.
TEXTBOX_STYLE_1 = With frame around the

 textbox object.
TEXTBOX_STYLE_2 = With 3D frame around

 the text object.

textbox_back_line Style of the lines under the textbox’s text.
For example: NO_LINE = Without lines under the text.

DOT_LINE = With dot lines.
GREY_LINE = With gray lines. (The color of

 the lines is predefined.)

textbox_font_id Font type of the textbox’s text.
For example: SMALL_FONT, MEDIUM_FONT and

LARGE_FONT.

textbox_font_color Color of the textbox’s text.
For example: COLOR_WHITE, COLOR_GREY1,

COLOR_GREY2 and COLOR_BLACK

textbox_background
_color

Background color of the textbox.
For example: COLOR_WHITE, COLOR_GREY1,

COLOR_GREY2 and COLOR_BLACK

textbox_text
_alignment

Alignment of the text in the textbox.
For example: LEFT_ALIGN, CENTRE_ALIGN,

RIGHT_ALIGN

textbox_max_chars Maximum number of characters in the textbox object.

textbox_current_num Current number of characters in the string displayed by the

_chars textbox object; the null-terminator is excluded.

textbox_left_char_pos The character position of the leftmost displaying character.

textbox_right_char_
pos

The character position of the rightmost displaying character.

textbox_num_chars_
displayed

The current number of characters that are being displayed

textbox_insert_pt_x Column position of the insertion point.

textbox_insert_pt_y Row position of the insertion point.

textbox_insert_pt_
char_pos

The character position beside the insert point.

textbox_insert_pt_
movement

Movement direction in the textbox.
For example: NO_MOVEMENT, MOVE_RIGHT

MOVE_LEFT

textbox_highlight_
start_char

Starting character position of the current selection.

textbox_highlight_
end_char

Ending character position of the current selection.

textbox_highlight_
length

Length of the current selection. If the
textbox_highlight_start_char is equal to the
textbox_highlight_end_char, there is no selection.

textbox_repeat_count Number of lines repeated displays in the textbox object.

textbox_attr Attribute of the Textbox object. The textbox_attr textbox
contains the parameter textbox_drawn, textbox_active,
textbox_enable, textbox_dirty, textbox_highlight,
textbox_insert_pt_visible and textbox_visible.

textbox_drawn Indicate whether the Textbox is drawn
on screen or not.

textbox_active Indicate whether the Textbox is being
used or not.

textbox_enable Indicate whether the Textbox response
to the pen action.

textbox_dirty Indicate the textbox object has been
changed. (e.g. cut, paste)

textbox_highlight Indicate whether the textbox is
highlighted or not.

textbox_insert_pt Indicate whether the insert point of the
_visible textbox is visible or not.
textbox_visible Indicate whether the Textbox is visible

on screen or not.

12d. API Functions

The following API functions can be used to manipulate textbox object.

• TextboxAddKeyInChar
• TextboxDeleteString
• TextboxDeleteTextbox
• TextboxDirty
• TextboxDrawTextbox
• TextboxEraseTextbox
• TextboxGetAttribute
• TextboxGetCurrentHighlightedSelection
• TextboxGetFont
• TextboxGetInsertPointPosition
• TextboxGetLeftCharPos
• TextboxGetMaxNumChars
• TextboxGetNumOfChars
• TextboxGetNumOfCharsDisplayed
• TextboxGetRightCharPos
• TextboxGetTextPointer
• TextboxGetTextboxBounds
• TextboxInitTextbox
• TextboxInsertString
• TextboxPasteString
• TextboxSetAttribute
• TextboxSetBounds
• TextboxSetDirty
• TextboxSetFont
• TextboxSetHighlightSelection
• TextboxSetInsertPointOff
• TextboxSetInsertPointOn
• TextboxSetInsertPointPositionByCharPos
• TextboxSetInsertPointPositionByXY
• TextboxSetLeftCharPos
• TextboxSetMaxNumChars
• TextboxSetRightCharPos
• TextboxSetText

• TextboxUndo

