
Application Design for Helio

Application Design for Helio

Designing Your Application

The first stage of writing an application involves designing screen layout (Figure 1.1),
user interface (UI) and resource file. This chapter will introduce these in two parts:

• Designing Screen Layout and User Interface

• Making Resource File

Designing Screen Layout and User Interface

Screen Layout

 Figure 1.1

This section describes the rules of designing the screen layout.

• The objects within a Form should not overlap each other.

The Screen Layout

Inlay

Scrollbar

Popup TriggerTitle Bar

Button

Application Design for Helio

• The buttons should be aligned with the bottom edge of the screen.

• There should not be too many objects on the screen at the same time.

User Interface

To create the User Interface, you should first define the UI elements used in your
application and create a resource file which defines the characteristics of the UI elements.
The components of user interface are objects which are identified by their object ID’s and
object types in the application. The UI objects are added to the application by providing
their object ID’s as the value of certain field in the resource file. The details of making a
resource file will be described in next section Making Resource File.This section
describes the UI elements used in your application.

The following is a brief introduction to the UI objects. More detailed description of each
of the objects is shown in Descriptions of UI Objects.

• Form
Form is a container-typed object which contains other UI objects. It is
used to view the application. An application can have many forms.

• Bitmap
There are two kinds of bitmap which are predefined bitmap and button
bitmap.

• Control
Control object includes button, repeat button, push button, check box
and popup trigger.

• Field
Field object allows user to input editable text. It can support multiple
lines of text.

• Line
Lines drawn on the screen are line objects. Application can define the
length, thickness and color of a line.

• List
List provides a list of items for selection. The items always stay on the
screen.

• Menu
Menu bar will popup a list of application commands when triggered.
After user clicks on one of the application commands, the application
command is selected and the popup menu will disappear.

Application Design for Helio

• Scheduler Line
Scheduler line is a feature provided in the Scheduler application. It is
only used in the Scheduler Application to show the week view.

• Scroll Bar
Scroll bar allows user to scroll up and down to view the items beyond
the screen bounds. It applies to List, Field and Table.

• String
String is used to display a non-editable predefined text string. It
doesn’t respond to any pen action.

• Table
Large number of text strings and numbers can be aligned and
displayed in table format.

• Text Box
Similar to Field object, Text Box allows user to input editable text.
However Text Box only supports single line of text. The length of the
text is virtually unlimited.

Application Design for Helio

Making Resource File

If you’re planning to write an application in VT - OS, designing the screen layout of your
application must be the first step. This section shows how to create a resource text file
and how to convert this text file to a C file.

• Making resource text file through an example

• Converting a resource file to a C file

Making resource text file through an example

Suppose an application only consists of a bitmap on the screen, then its resource file
includes two UI objects: form and bitmap. Listing 1.1 shows the resource text file of this
application as an example. When you write a resource file, several main points you
should bear in mind:

• #XXX indicates the following resource details describe a certain UI object
while #END_XXX indicates the end of the object description where XXX
represents the name of a UI object.

• Within the resource details of a UI object, it divides into certain fields. Each
field starts with an indicator, ~Fx, where x is the field number.

• The bracket letters represent different data type (See Table 1.1).

• Each UI object inside the resource file has an object ID which acts as an
identity within an application. So the object ID cannot be used repeatedly.

• Spacing is not allowed within the resource file.

• Different UI objects describe their resource details in a different format. The
total numbers of fields are also different. See the chapter Resource File
Format for more information.

• At the end of the resource file, remember to press enter if you use window’s
editor; otherwise the resource file cannot be compiled.

Application Design for Helio

Table 1.1

Brack
B
W
UW
SH
U
S
BO
P

Listing 1.1

#FOR
NAME
ID=0
~F0
(B)O
~F1
(SH)
(SH)
(SH)
(SH)
~F2
(U)F
~F3
(B)F
~F4
(S)F
~F5
(SH)
(SH)
(SH)
(SH)
(P)F
~F6
(U)N
~F7
(U)O
(B)O
#END
#BIT
NAME
ID=1

s
Interpretation of the bracket letter
et letters Data types
BYTE
WORD
UWORD
SHORT
USHORT
STRING
BOOLEAN
BITMAP FILE

M
=

B

B
B
B
B

O

O

O

F
F
F
F
O

O

B
B
_
M
=

)
Test.txt (Resource file
FORM_TEST

JECT.TYPE=FORM

OUNDS.X=0
OUNDS.Y=0
OUNDS.WIDTH=160
OUNDS.HEIGHT=160

CUSED_OBJECT=1

RM_STYLE=NORMAL

RM_TITLE=Test Application

ORM_BITMAP.X=0
ORM_BITMAP.Y=0
ORM_BITMAP.WIDTH=11
ORM_BITMAP.HEIGHT=12
RM_BITMAP.FILE=Q_TWO_BIT,TEST.BMP

_OF_OBJECTS=1

JECT_ID=1
JECT_TYPE=BITMAP
FORM
AP
BITMAP_TEST

Application Design for Helio

~F0
(B)OBJECT.TYPE=BITMAP
~F1
(U)RELATED_TABLE_ID=65535
~F2
(SH)BOUNDS.X=10
(SH)BOUNDS.Y=10
(SH)BOUNDS.WIDTH=20
(SH)BOUNDS.HEIGHT=20
~F3
(B)BITMAP_STYLE=BITMAP_STYLE_0
~F4
(SH)BITMAP1_BITMAP.X=10
(SH)BITMAP1_BITMAP.Y=10
(SH)BITMAP1_BITMAP.WIDTH=20
(SH)BITMAP1_BITMAP.HEIGHT=20
(P)BITMAP1_BITMAP.FILE=Q_FOUR_BIT,TEST.BMP
~F5
(SH)BITMAP2_BITMAP.X=10
(SH)BITMAP2_BITMAP.Y=10
(SH)BITMAP2_BITMAP.WIDTH=20
(SH)BITMAP2_BITMAP.HEIGHT=20
(P)BITMAP2_BITMAP.FILE=Q_FOUR_BIT,TEST01.BMP
~F6
(BO)BITMAP_ATTR.BITMAP_ENABLE=TRUE
(BO)BITMAP_ATTR.BITMAP_ACTIVE=FALSE
(BO)BITMAP_ATTR.BITMAP_VISIBLE=TRUE
#END_BITMAP

Converting a resource file to a C file

In view of programming, only a resource text file is useless. So compiling a resource file
to a C file is essential. Such process is composed of two intermediate steps. First, the
resource file is compiled to generate a binary file. Second, this binary file is converted to
a C file. Both intermediate steps operate with two specific executed files:
rcompile.exe and bin2hex.exe. Conversion operates as follow:

• Switch to DOS prompt if you are using windows.
• Under the folder which consists of the two execute files and also the resource

file, you can type:

rcompile [resource file name]

The name of the generated binary file is resource.bin.
• Then you can enter:

bin2hex resource.bin [output C file name]

Application Design for Helio

7

Developing Your Application
VT - OS is a single-task and event driven operation system. Only one application can run
at a time. Each application is composed of several forms which contain certain UI objects
to display. Before you start to write an application, you should realize the operation of
Helio system and then you can structure your own application.

• Each application has a Main function which is inside main.c file. System
sends a launch code to start an application. The concept of launch codes will
be discussed thoroughly later in this chapter. Note that the purpose of Main
function is to receive launch codes and call AppLaunch function to handle
them. This function exists in ApLaunch.c file.

• Since VT - OS is event driven, an event loop exists in main.c file to get
events and then pass to event handler. Each application contains several
forms. Different forms should have their own event handler function. The
Chapter “Application Event Loop” discusses in details.

• VT - OS application is stopped when it receives EVT_APP_STOP event.
Later in this chapter, you will learn how to stop an application.

This chapter discusses the following topics:

• Launching an application

• Handling Launch Codes

• Stopping an application

• Application programming concept

• Launch codes

Launching an application

Launch codes are communication tools between VT - OS and applications. Basically,
each application can perform a normal launch which loads an application wholly and
displays all its user interface. For example, when user selects an application icon from the
main menu screen or presses any shortcut buttons on the Helio, system then generates the
launch code LAUNCH_CMD_NORMAL_LAUNCH, which tells the application to have a
complete and normal launch.

However, in some cases, applications do not need to have a complete launch. System
may require the application to perform some actions rather than to display its user
interface. A good example is the global find. System generates the launch code
LAUNCH_CMD_FIND, which tells each application to search its database but no need to

Application Design for Helio

8

show user interface. It is wasteful to have a complete launch of each application for just
searching database. So other launch codes can avoid wasting resources.

Each launch code is composed of two types of information:

• Command codes (cmd), such as LAUNCH_CMD_NORMAL_LAUNCH, provide
launching information for application to perform required action.

• Command pointer (cmd_ptr) provides extra information for the application. Such
information is optional. For example, the global find action needs to provide the
string text for application to search its database.

NOTE: Some launches require the command code only and do not need any
further information. In the structure of these launch codes, their command pointer
may be useless. Thus the application does not need to free the command pointer
of these launch codes when handling them. In other words, if the command
pointer of a launch code is used to provide extra information, the application
requires to free this command pointer when handling it. In the following section,
You will learn how to handle launch code. For the structure of the launch code,
please refer to the chapter “Details of launch codes”. Also a complete list of other
launch codes is shown in the section “Launch codes summary”.

Handling Launch Codes

When an application first receives a launch code in Main function, it passes the launch
code to the AppLaunch function, which handle the launch code for this application. For
instance, the Phonebook application has a PhonebookAppLaunch function for
handling launch codes. Listing 2.1 shows the Main function of Phonebook application as
an example.

Inside the AppLaunch function, it first checks whether it needs to handle it. For
example, if the calculator application receives the launch code LAUNCH_CMD_FIND, it
should exit without doing anything because no database exists in this application. Later in
this chapter will teach:

• Handling Normal Launch

• Handling Other Launch Codes

Application Design for Helio

Listing 2.1

__main
{
 Ph
}

Handling No

An application
LAUNCH_CMD_
initialize the UI
necessary. Then
event should be
parameters of th
from memory
command poin
termination of t
Phonebook App

Note that not al
parameters befo
game does not
application rest
Manager in VT
Chapter “Data M

Listing 2.2

case L
U
P
E
P
U
D

 r

Handling Ot

Launch codes
launch different
code or not. A
Main function of Phonebook application
(WORD cmd, void *cmd_ptr)

onebookAppLaunch(cmd, (void*)cmd_ptr);

rmal Launch

performs a normal launch only when it receives the launch code
NORMAL_LAUNCH. After receiving this code, the application begins to
 parameters to memory, and also tries to restore the application status if
 it goes to an event loop. To stop an application, an EVT_APP_STOP
 received to break the event loop. Finally the application saves the
e application if any changes occur and then it unloads all its UI objects

before leaving. Note that the application does not need to free the
ter of the launch code LAUNCH_CMD_NORMAL_LAUNCH before
he application. Listing 2.2 shows the codes to handle a normal launch of
lication.

l application requires to restore application status and to save application
re starting and stopping an application respectively. For example, if a
allow user to continue his game after he leaves, in this case both

ore and application save are not necessary. Note also that the Data
 - OS helps to restore and save application status. Please refer to the
anager” for more details.
Codes for handling a normal launch in Phonebook Application
9

AUNCH_CMD_NORMAL_LAUNCH:
IApplicationInit();
honebookAppRestore(FALSE);
ventLoop();
honebookAppSave();
IDeleteAllAppObjects();
ataCloseDB(pb_dbid);
eturn TRUE;

her Launch Codes

other than LAUNCH_CMD_NORMAL_LAUNCH bring an application to
ly. Basically, the application should decide whether it handles the launch
s aforementioned, if a calculator application receives the launch code

Application Design for Helio

LAUNCH_CMD_FIND, it should decide not to handle it and then free the command
pointer before exit. This launch code provides extra information for the application and
thus freeing the command pointer is necessary. If you want to know which launch codes
can provide more information, please refer to the chapter “Details of launch codes”.
Listing 2.3 shows the source codes for handling launch codes of Calculator application. A
complete list of launch codes is provided later in this chapter in the “Launch codes”.

Listing 2.3

BOOL
*cmd_ptr)

{

}

CalculatorAppLaunch in Calculator application
10

EAN CalculatorAppLaunch(WORD cmd, void

switch(cmd)
{
case LAUNCH_CMD_NORMAL_LAUNCH:

UIApplicationInit();
MathsAppRestore(FALSE);
EventLoop();
MathsAppSave();
UIDeleteAllAppObjects();
return TRUE;

// Calculator does not handle global find
case LAUNCH_CMD_FIND:

pfree(cmd_ptr);
return TRUE;

case LAUNCH_CMD_GOTO_REC:
if (((GotoRec*)cmd_ptr)->find_string)
pfree(((GotoRec*)cmd_ptr)->find_string);
pfree(cmd_ptr);
return TRUE;

case LAUNCH_CMD_ALARM_HIT:
pfree(cmd_ptr);
return TRUE;

default:
return FALSE;

}
return FALSE;

Application Design for Helio

11

Stopping an application

An application stops when it receives an EVT_APP_STOP event. The event loop detects
this and then terminates the application. You will know more about the event loop and
events in next chapter.

System cleans up when an application stops. The process includes closing the database
and saving application parameters for restoring through Data Manager. Application first
saves application parameters if necessary for restoring next time. Then it deletes all UI
objects of the application from UI links. Finally system closes the database of the
application if any. Note that each application can have its own application save function.

Application programming concept

The previous sections bring you the idea of how to develop an application. This section
will discuss about how to write an application programmatically. Each application may
consist of several forms and each form is handled individually by its own event handler
function. You can learn more in the section “ApplicationHandleEvent” of next chapter.
All these application event handlers are inside App.c file.

Each application should have an AppLaunch function to handle launch codes. For
example, Phonebook application has its PhonebookAppLaunch function while
Calculator application has its CalculatorAppLaunch function. No matter which
application, its AppLaunch function is inside AppLaunch.c file. Moreover, main
function, which passes the received launch code to the AppLaunch function, is essential
to each application. The main function is inside main.c file.

If an application needs to store its status before it terminates, the pair functions,
AppSave and AppRestore, should help. The former is called after the event loop. Its
function is to save the data in the application when it is called to stop. The latter is called
before the event loop. Its function is to restore the previously saved data of the
application before the application starts. Note that not all applications need these pair
functions, such as Calculator application. Listing 2.2 and Listing 2.3 show the source
codes of Phonebook application and Calculator application respectively. If you compare
the codes of these two applications which handle normal launch, you will find
PhonebookAppRestore and PhonebookAppSave are called before and after the
event loop in Phonebook application but no these pair functions exist in Calculator
application. The pair functions are inside AppSave.c file. Note that when you define
anything in an application, you can define them inside App.h file. A typical example is
to define the object ID of an application.

Application Design for Helio

Launch codes summary

Table 3.1 displays all the launch codes in VT - OS. These launch codes are defined inside
ALaunch.h file.

Table 3.1

Launch cod
LAUNCH_C

LAUNCH_C

LAUNCH_C

LAUNCH_C

LAUNCH_C

LAUNCH_C

LAUNCH_C

LAUNCH_C

NOTE: A
launch cod
launch cod
launch cod
alarm setti
VT - OS launch codes
12

e
MD_NORMAL_LAUNCH Launch application normally.
MD_FIND Use in global find. Find a text string.
MD_GOTO_REC Go to a particular record and display it with string

highlighted or without string highlighted
optionally.

MD_ALARM_HIT AlarmManager sends this launch code to the
application to tell the alarm is hit.

MD_SYNC_START Launch VSync application. Use when the button
in cradle is pressed.

MD_VOXMEMO_LAUNCH Launch VoiceMemo application. Use when the
button at the back of the Helio is pressed.

MD_CAL_PEN Launch to calibrate pen in System setup
application. Use when the Helio is hard reset.

MD_MODEM_CONNECT Launch Connect application in email application.

pplication may not need to handle all the launch codes because some
es are so specific for only one application. Obviously, the last four
es in Table 3.1, they are used to launch a specific application. For the
e LAUNCH_CMD_ALARM_HIT, it is used for the application which has
ng.

Application Design for Helio

13

Application Event Loop

Brief Overview

All VT OS applications are event-driven and single-tasking i.e. only one Form is active
each time. As described in the section Launching an application, an application will
perform a complete launch and display its user interface when it receives the
LAUNCH_CMD_NORMAL_LAUNCH. It starts with a startup routine, goes into an event
loop (which will be discussed later in this chapter) and then exits with a stop routine
finally. Figure 3.1 shows the control flow in an application.

Events are commands generated by the system in respond to certain user input action.
They are handled by the appropriate event handlers. Event handler functions are
arranged in hierarchy. When an event handler handles an event, all the other event
handler functions, which are arranged below it, are skipped. Event Manager is the main
interface between the OS software and the application. It creates the queue and provides
functions for appending events onto the queue. It is written in the file EVENTMGR.cpp.
For further details of the event manager, please refer to the Chapter “Event Manager”.

The source code of the Event Loop is shown in Listing 3.1. In the event loop, the
application keeps on checking the events in the event queue. If there are no events in the
event queue, the application remains in the EvtGetEvt until there is event and it quits the
event loop when it receives EVT_APP_STOP sent by the system through the event
queue. If there are events in the event queue, the application fetches the first event from
the queue and dispatches it. The event is passed onto the system by calling the
SystemHandleEvent function. If the event is not a system-handled event, it will not be
handled by SystemHandleEvent, the application will call MenuHandleEvent to handle it.
If it is not handled by MenuHandleEvent, the application will call the
ApplicationHandleEvent to handle it. If it is not handled by ApplicationHandleEvent, the
event will be handled by the FormDispatchEvent which will point to the event handler of
a specific Form of the application. In this Chapter, we will discuss each of these one by
one:

Listing 3.1

void EventLoop(void)
{

EvtType event;

do
{
 EvtGetEvent (&event);

The Event Loop

Application Design for Helio

14

 if (!SystemHandleEvent(&event))
 if (!MenuHandleEvent(&event))
 if (!ApplicationHandleEvent(&event))

 FormDispatchEvent(&event);
}
while (event.eventType != EVT_APP_STOP);

}

Application Design for Helio

15

Figure 3.1 The Control Flow in an Application

Is it
EVT_APP_

STOP?

Keep looping
until there is

event

Process and
generate events

Process and
generate events

NO

YES

YES

Is there events
in the event

queue?

SysHandleEvent

EvtGetEvent

ApplicationHandleEvent

FormDispatchEvent

Is this a system
function?

Is this an
application

handled event?

NO

NO

YES

Has the event
been handled?Process and

generate events

YES NO

End

NO

YES

Application Design for Helio

16

SystemHandleEvent

The system handles events like tapping inlay icons, tapping the popup keyboard on the
screen and tapping objects in a Form such as buttons. It mainly takes care of user input
and generates other events for further action. It returns true if these system events are
handled. Listing 3.2 shows the SystemHandleEvent function. When an event is passed
to it, only one of the four functions will receive it, for example:

• Inlay Events include activating Main Menu, Inlay Keyboard, Inlay Menu, OK, Exit,
shortcut to Global Find and Calculator.

• KeyboardHandleEvent handles the event that has occurred when tapping the keys on
the popup keyboard.

• FormHandleEvent handles the events that have occurred in the Form. These include
any pen events, selecting objects in the Form like Menu, Scrollbar, Table, Schedule
Line, Bitmap…etc. The subsequent events are handled by their corresponding Event
Handlers like MenuHandleEvent, ScrollbarHandleEvent…etc.

• JotHandleEvent handles events for handwriting recognition.

They are arranged in a hierarchy, when an event is handled by a function, it will not be
handled by the other which is lower in the hierarchy.

Listing 3.2

BOOLEAN SystemHandleEvent(EvtType *Event)
{

if (InlayHandleEvent(Event)) return TRUE;
if (KeyboardHandleEvent(Event)) return TRUE;
if (FormHandleEvent(Event)) return TRUE;
if (JotHandleEvent(Event)) return TRUE;
return FALSE;

}

MenuHandleEvent

MenuHandleEvent allows the system to handle the events that has occurred on the menu
object. These include any pen events, menu enter event, menu select event and menu exit
event.

The SystemHandleEvent function

Application Design for Helio

17

ApplicationHandleEvent

If MenuHandleEvent did not handle the event, the application will call the
ApplicationHandleEvent to handle it. ApplicationHandleEvent only handles the
EVT_FORM_LOAD event. It performs the function of loading a form into the memory
and switching the event handlers of the application to a particular form event handler.
This is done by FormInitForm, FormSetEventHandler and FormSetActiveForm
functions. Listing 3.3 shows the template of the ApplicationHandleEvent of the
Phonebook application. As the event is not handled by the system, it is passed to
FormDispatchEvent and according to the form to which the application switch, the
corresponding procedures are then taken. Therefore in Listing 3.3, only the switch cases
need to be modified when writing an application.

• In the FormInitForm function, the resources of the form object defined in the resource
file is loaded to a specific location in the memory. The application can then access
the form object by pointing to the corresponding location in the memory.

• There are many forms in one application. The developer needs to clarify which Form
will receive the user’s action. The FormSetEventHandler is called to set the event
handler routine for a specified form. It maps the event handler functions for that form
to the function pointer FormDispatchEvent. Therefore all events not handled by the
system will go to FormDispatchEvent.

• The FormSetActiveForm function sets the specific form to be active. This is
important because there is more than one form in an application, event handler may
be mismatched to an unwanted form and the events in the correct form will not be
handled correctly. By the FormSetActiveForm, the system knows which form is
active and all the functions of the event handler will be addressed to that form. The
event will be handled by the event handler of that active form instead.

Listing 3.3

static BOOLEAN ApplicationHandleEvent(EvtType *Event)
{

Form *form_ptr;
ObjectID form_id;
BYTE object_type;
Err Error;

if (Event->eventType == EVT_FORM_LOAD)
{

The ApplicationHandleEvent function

Application Design for Helio

18

form_id = (ObjectID)Event->eventID;
Error=UISearchForAddress(form_id,&object_type,(void**)&form
_ptr);
if (Event->para1 == 1 || Error != TRUE)
{

FormInitForm(form_id);
}
if(!UISearchForAddress(form_id,&object_type,(void**)&form_p
tr)) return FALSE;

switch (form_id)
{
case FORM_TEL_LIST:
FormSetEventHandler(FORM_TEL_LIST,(void**)&FormDispatchEven
t, (void*)PhonebookTelList);
break;

case FORM_EDIT_CATE:
FormSetEventHandler(FORM_EDIT_CATE,(void**)&FormDispatchEve
nt, (void*)PhonebookEditCate);
break;

case FORM_INPUT_CATE:
FormSetEventHandler(FORM_INPUT_CATE,(void**)&FormDispatchEv
ent, (void*)PhonebookInputCate);
break;

:
:

}
FormSetActiveForm(form_id);
return TRUE;

}
return FALSE;

}

FormDispatchEvent

If an event is not handled by the SystemHandleEvent, the MenuHandleEvent and the
ApplicationHandleEvent, the event will go to FormDispatchEvent finally. This is a
boolean function which consists of one line:

Form ID of the form

Event handler for the form with the form
ID FORM_TEL_LIST

Application Design for Helio

19

BOOLEAN (*FormDispatchEvent)(EvtType *Event);

The system maps the event handler of a form to the function pointer FormDispatchEvent.
After mapping, the unhandled event can be passed to the mapped FormDispatchEvent
and the corresponding active form can process the event. In the example in Listing 3.4,
the EVT_MENU_SELECT_ITEM is handled by the event handler PhonebookInputCate
after the event handler has been mapped to the FormDispatchEvent pointer using the
FormSetEventHandler function. Then

Let’s take one of the Phonebook event handlers in Listing 3.4 as an example. If the user
taps on the Exit button on an Input Categories form, the system appends the
EVT_INLAY_SELECT event to the event queue. As the event is not handled by the
system, it is passed to FormDispatchEvent and according to the switch case, the
corresponding procedures are taken.

 Listing 3.4

BOOLEAN PhonebookInputCate(EvtType *Event)
{

ObjectID tempID;

switch (Event->eventType)
{
case EVT_MENU_SELECT_ITEM:
MenuItemSelectedAction((USHORT)(Event->para1));
return TRUE;

case EVT_INLAY_SELECT:
switch (Event->para1)
{
case INLAY_OK:
if (InputCatCheckCharIn() == TRUE) return TRUE;
break;

case INLAY_EXIT:
FormPopupForm(FORM_EDIT_CATE);
return TRUE;

default: return FALSE;
}
break;

case EVT_KEY:
if (Event->eventID == SOFT_KEY)
{

The event handler for the Input Categories form in Phonebook

Application Design for Helio

20

FormGetActiveObject(FORM_INPUT_CATE,&tempID);
if (tempID == TEXTBOX_INPUT_CATE)
{
if ((BYTE)(Event->para1) == 13 &&
(InputCatCheckCharIn() == TRUE)) return TRUE;
else TextboxAddKeyInChar(TEXTBOX_INPUT_CATE,
(BYTE)(Event->para1));
return TRUE;
}
}
break;

case EVT_BITMAP_SELECT:
PhonebookEditCateSetScrollbar();
FormPopupForm(FORM_EDIT_CATE);
return TRUE;

case EVT_FORM_OPEN:
FormDrawForm(FORM_INPUT_CATE);
return TRUE;
default:
return FALSE;

}
return FALSE;
}

	Application Design for Helio
	Designing Your Application
	Designing Screen Layout and User Interface
	Screen Layout
	User Interface
	Making Resource File
	Making resource text file through an example
	Converting a resource file to a C file

	Developing Your Application
	Launching an application
	Handling Launch Codes
	Handling Normal Launch
	Handling Other Launch Codes
	BOOLEAN CalculatorAppLaunch(WORD cmd, void *cmd_ptr)

	Stopping an application
	Application programming concept
	Launch codes summary

	Application Event Loop
	Brief Overview
	SystemHandleEvent
	MenuHandleEvent
	ApplicationHandleEvent
	FormDispatchEvent

