
UI Events

1) UI Events List

UI Object UI Object Events
Application ! EVT_APP_STOP

! EVT_APP_LAUNCH

Form ! EVT_FORM_OPEN
! EVT_FORM_LOAD

Control ! EVT_CONTROL_ENTER
! EVT_CONTROL_EXIT
! EVT_CONTROL_POPUP_SELECT
! EVT_CONTROL_REPEAT
! EVT_CONTROL_SELECT

Field ! EVT_FIELD_CHANGED
! EVT_FIELD_ENTER
! EVT_FIELD_MODIFIED
! EVT_FIELD_SELECT
! EVT_FIELD_JOT_PASTE_STRING

List ! EVT_LIST_ARROW
! EVT_LIST_ENTER
! EVT_LIST_EXIT
! EVT_LIST_SELECT

Menu ! EVT_MENU_ENTER
! EVT_MENU_EXIT
! EVT_MENU_SELECT
! EVT_MENU_SELECT_ITEM

Scrollbar ! EVT_SCROLLBAR_ARROW_DELAY
! EVT_SCROLLBAR_ENTER
! EVT_SCROLLBAR_ENTER_REPEAT
! EVT_SCROLLBAR_EXIT
! EVT_SCROLLBAR_REPEAT
! EVT_SCROLLBAR_SELECT

Table ! EVT_TABLE_ENTER
! EVT_TABLE_SELECT
! EVT_TABLE_EXIT

Schedule Line ! EVT_SCHLINE_ENTER
! EVT_SCHLINE_EXIT
! EVT_SCHLINE_SELECT

Bitmap ! EVT_BITMAP_ENTER
! EVT_BITMAP_SELECT



! EVT_BITMAP_EXIT

Textbox ! EVT_TEXTBOX_CHANGED
! EVT_TEXTBOX_ENTER
! EVT_TEXTBOX_JOT_PASTE_STRING
! EVT_TEXTBOX_MODIFIED
! EVT_TEXTBOX_SELECT

Keyboard ! EVT_KEY
! EVT_KEYBOARD_ENTER
! EVT_KEYBOARD_EXIT
! EVT_KEYBOARD_STATUS

Inlay ! EVT_INLAY_ENTER
! EVT_INLAY_EXIT
! EVT_INLAY_SELECT

2) Descriptions of Events

2a) Events of Application Start and Application Stop

EVT_APP_STOP
Sent by: Application /

System

Handled by: Application

Description: This event is used to request an application to stop. When the active
running application receives this event, the application event loop is
stopped and the application should save all required information for
next application restore.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_APP_STOP
eventID = NULL
para1 = NULL
para2 = NULL
evtPBP = NULL



EVT_APP_LAUNCH
Sent by: Application /

System

Handled by: System

Description: This event is used to request the system to launch a particular
application. This event should be sent after the EVT_APP_STOP is
sent.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_APP_LAUNCH
eventID = the application ID
para1 = launch command
para2 = NULL
evtPBP = launch command pointer. It should be NULL if 

launch command pointer is not required.

2a) Events of Form

EVT_FORM_OPEN
Sent by: Form API functions FormPopupForm

Handled by: Application

Description: This event is the request to ask the application to initialize all the form
objects and draw a form

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_FORM_OPEN
eventID = the object ID of the form that is going to be 



opened
para1 = NULL
para2 = NULL
evtPBP = NULL

EVT_FORM_LOAD
Sent by: Form API functions FormPopupForm

Handled by: Application

Description: There are 2 purposes:
•  To load the form object into memory if required.
•  to request and switch the active form to the loaded form

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_FORM_LOAD
eventID = the object ID of the form that is going to be 

loaded
para1 = NULL
para2 = NULL
evtPBP = NULL

2c) Events of Control

EVT_CONTROL_ENTER
Sent by: ControlHandleEvent

Handled by: ControlHandleEvent

Description: This event indicates and shows that a pen-down event is received and
the pen touches the screen within the bounds of a control object. When
the ControlHandleEvent receives this event, corresponding procedure
is proceeded. For example, the control object being entered will be
inverted in color.



Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_CONTROL_ENTER
eventID = the object ID of the control object that the pen 

entered its bounds
para1 = NULL
para2 = the style of the control object

0 = BUTTON
1 = PUSH_BUTTON
2 = REPEAT_BUTTON
3 = CHECKBOX
4 = POPUP_TRIGGER

evtPBP = pointer to the memory that stored the data of 
the control object

EVT_CONTROL_EXIT
Sent by: ControlHandleEvent

Handled by: ControlHandleEvent

Description: This event indicates that a pen-move event is received and the pen is
moved outside the bounds of the object that is entered before. When
the ControlHandleEvent receives this event, corresponding procedure
is proceeded. For example, the control object that the pen is exit will
be inverted back to original color.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_CONTROL_EXIT
eventID = the object ID of the control object that the pen 

just moved out
para1 = NULL
para2 = the style of the control object
evtPBP = pointer to the memory of  the control object

EVT_CONTROL_POPUP_SELECT
Sent by: ControlHandleEvent



Handled by: Application

Description: This event indicates that pen-up event is received and the pen is lifted
within the bounds of one of the selection of the popup window of the
popup trigger control object that the pen entered. The event will be
sent back to application layer for further processing.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_CONTROL_POPUP_SELECT
eventID = the object ID of the selected control object
para1 = the item_number of selected item
para2 = NULL
evtPBP = pointer to the memory of  the control object

EVT_CONTROL_REPEAT
Sent by: ControlHandleEvent

Handled by: Application

Description: This event indicates that an action of a REPEAT_BUTTON control
object is repeated once. The event will be sent back to application
layer for further processing.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_CONTROL_REPEAT
eventID = the object ID of the repeating 

REPEAT_BUTTON control object
para1 = NULL
para2 = REPEAT_BUTTON
evtPBP = pointer to the memory of  the control object

EVT_CONTROL_SELECT
Sent by: ControlHandleEvent

Handled by: Application or ControlHandleEvent



Description: This event indicates that pen-up event is received and the pen is lifted
within the bounds of the control object that the pen entered. The event
will be sent back to application layer for further processing or the
ControlHandleEvent will absorb this event if the control style is
POPUP_TRIGGER because the popup window will be shown for
further selection of options.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_CONTROL_SELECT
eventID = the object ID of the selected control object
para1 = NULL
para2 = style of the control object
evtPBP = pointer to the memory of  the control object

2d) Events of Field

EVT_FIELD_CHANGED
Sent by: FieldHandleEvent

Handled by: Application

Description: This event is sent to application in order to notify the application about
the change of the content and the change of the displaying screen of
the corresponding field object. Therefore, if the text in the field object
is changed or the text in the field object is scrolled up or down, this
event is sent. After the reception of the event, application can have
enough information to set the parameters of corresponding scrollbar.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_FIELD_CHANGED
eventID = the object ID of the FIELD object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the field object



EVT_FIELD_ENTER
Sent by: FieldHandleEvent

Handled by: FieldHandleEvent

Description: This event indicates that a pen down event is received within the
bounds of the field object. After the EVT_FIELD_ENTER event is
received by the FieldHandleEvent, insert point is disabled and is ready
for highlighting the text in the field object.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_FIELD_ENTER
eventID = the object ID of the FIELD object
para1 = x-coordinate of the current position of the pen 

when it enters the bounds of the field object
para2 = y-coordinate of the current position of the pen 

when it enters the bounds of the field object
evtPBP = pointer to the memory of  the field object

EVT_FIELD_JOT_PASTE_STRING
Sent by: Jot Recognition System

Handled by: FormHandleEvent

Description: This event is to paste jot symbol into a field object. The insert point
and highlighted region of the field object are updated on the screen
and the field object is redrawn.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_FIELD_JOT_PASTE_STRING
eventID = the active application ID
para1 = NULL
para2 = NULL
evtPBP = the text to be pasted



EVT_FIELD_MODIFIED
Sent by: FieldHandleEvent

Handled by: Application

Description: This event is sent to application in order to notify the application about
the change of the content of the corresponding field object. Therefore,
if the text in the field object is changed, this event is sent. After the
reception of the event, application can have enough information to set
the parameters of corresponding scrollbar. This event can be used to
check whether the content is modified or not.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_FIELD_MODIFIED
eventID = the object ID of the FIELD object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the field object

EVT_FIELD_SELECT
Sent by: FieldHandleEvent

Handled by: Application

Description: This event indicates that a pen up event is received while a pen down
event for that field object was already received. This event gives a
chance the application to proceed a section of codes under the selected
condition. The insert point is shown if there is no highlight of the text.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_FIELD_SELECT
eventID = the object ID of the FIELD object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the field object



2e) Events of List

EVT_LIST_ARROW
Sent by: ListHandleEvent

Handled by: Application

Description: This event is sent out if the pen is lifted within the bounds of the
scroll-up or scroll-down button on the list object. Application can have
a chance to do something after the reception of the notification of the
selection of the scroll-up or scroll-down button.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_LIST_ARROW
eventID = the object ID of the LIST object
para1 = REGION_UP_ARROW if the scroll-up button 

is selected
REGION_DN_ARROW if the scroll-down 
button is selected

para2 = NULL
evtPBP = pointer to the memory of  the list object

EVT_LIST_ENTER
Sent by: ListHandleEvent

Handled by: ListHandleEvent

Description: This event is sent when the ListHandleEvent receives a pen-down
event within the bounds of a list object.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_LIST_ENTER
eventID = the object ID of the LIST object
para1 = REGION_ITEMS if the entered region is the 

region of one of the selections in the list object
REGION_UP_ARROW if the entered region is 
the region of the scroll-up arrow in the list 
object
REGION_DN_ARROW if the entered region is



the region of the scroll-down arrow in the list 
object

para2 = NULL
evtPBP = pointer to the memory of  the list object

EVT_LIST_EXIT
Sent by: ListHandleEvent

Handled by: ListHandleEvent

Description: ListHandleEvent keeps track of the action of the pen after the
EVT_LIST_ENTER event is received. If the pen is moved out of the
bounds of the field object. EVT_LIST_EXIT will be sent.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_LIST_EXIT
eventID = the object ID of the LIST object
para1 = REGION_ITEMS if the region being moved out

is the region of one of the selections in the list 
object
REGION_UP_ARROW if the region being 
moved out is the region of the scroll-up arrow in
the list object
REGION_DN_ARROW if the region being 
moved out is the region of the scroll-down 
arrow in the list object

para2 = NULL
evtPBP = pointer to the memory of  the list object

EVT_LIST_SELECT
Sent by: ListHandleEvent

Handled by: Application

Description: This event is sent out if the pen is lifted within the bounds of the field
object that is entered in the last pen down section.

Data passed by The following shows the required data that is passed with the event



event:
eventType = EVT_LIST_SELECT
eventID = the object ID of the LIST object
para1 = the item number of the new selection of the list
para2 = NULL
evtPBP = pointer to the memory of  the list object

2f) Events of Menu

EVT_MENU_ENTER
Sent by: MenuHandleEvent

Handled by: MenuHandleEvent

Description: This event is sent when the MenuHandleEvent receives a pen-down
event within the bounds of one of the selection in the menu popup
window.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_MENU_ENTER
eventID = the object ID of the MENU object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the menu object

EVT_MENU_EXIT
Sent by: MenuHandleEvent

Handled by: MenuHandleEvent

Description: MenuHandleEvent keeps track of the action of the pen after the
EVT_MENU_ENTER event is received. If the pen is moved out of the
bounds of the selection in the menu popup window.
EVT_MENU_EXIT will be sent.

Data passed by
event:

The following shows the required data that is passed with the event



eventType = EVT_MENU_ENTER
eventID = the object ID of the MENU object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the menu object

EVT_MENU_SELECT
Sent by: InlayHandleEvent

Handled by: MenuHandleEvent

Description: This event is sent when the menu button is clicked. After
MenuHandleEvent receives this event, the menu popup window will
be initiated.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_MENU_SELECT
eventID = the object ID of the MENU object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the menu object

EVT_MENU_SELECT_ITEM
Sent by: MenuHandleEvent

Handled by: Application

Description: This event is sent back to application to notify it about the selection of
menu item. Then the application can have a chance to proceed the
corresponding procedures.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_MENU_ENTER
eventID = the object ID of the MENU object
para1 = the item number of the menu selection
para2 = NULL
evtPBP = pointer to the memory of  the menu object



2g) Events of Scrollbar

EVT_SCROLLBAR_ARROW_DELAY
Sent by: ScrollbarHandleEvent

Handled by: ScrollbarHandleEvent

Description: This event is used to introduce an intermediate state to generate a
delay between the first EVT_SCROLLBAR_REPEAT and the second
EVT_SCROLLBAR_REPEAT. This event is only sent when the first
click is on the arrow region of the scrollbar.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_SCROLBLAR_ARROW_DELAY
eventID = the object ID of the SCROLLBAR object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the scrollbar object

EVT_SCROLLBAR_ENTER
Sent by: ScrollbarHandleEvent

Handled by: ScrollbarHandleEvent

Description: This event is sent when the ScrollbarHandleEvent receives a pen-
down event within the bounds of the scrollbar.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_SCROLBLAR_ENTER
eventID = the object ID of the SCROLLBAR object
para1 = current x-coordinate of the pen on the touch 

panel
para2 = current y-coordinate of the pen on the touch 

panel
evtPBP = pointer to the memory of  the scrollbar object



EVT_SCROLLBAR_ENTER_REPEAT
Sent by: ScrollbarHandleEvent

Handled by: ScrollbarHandleEvent

Description: This event is used to introduce an intermediate state to generate a
delay between the first EVT_SCROLLBAR_REPEAT and the second
EVT_SCROLLBAR_REPEAT. This event is only sent when the first
click is on the upper region or the lower region of the scroll car.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_SCROLBLAR_ENTER_DELAY
eventID = the object ID of the SCROLLBAR object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the scrollbar object

EVT_SCROLLBAR_EXIT
Sent by: ScrollbarHandleEvent

Handled by: ScrollbarHandleEvent

Description: ScrollbarHandleEvent keeps track of the action of the pen after the
EVT_SCROLLBAR_ENTER event is received. If the pen is moved
out of the bounds of the scrollbar, EVT_SCROLLBAR_EXIT will be
sent.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_SCROLLBAR_ENTER
eventID = the object ID of the SCROLLBAR object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the scrollbar object



EVT_SCROLLBAR_REPEAT
Sent by: ScrollbarHandleEvent

Handled by: Application

Description: This event is sent when the pen is continually held within the bounds
of a scrollbar. Application should watch for this event if dynamic
scrolling is required. Dynamic scrolling means that the display is
updated as the user click on the scrollbar.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_SCROLLBAR_REPEAT
eventID = the object ID of the SCROLLBAR object
para1 = previous value of the scrollbar
para2 = new value of the scrollbar
evtPBP = pointer to the memory of  the scrollbar object

EVT_SCROLLBAR_SELECT
Sent by: ScrollbarHandleEvent

Handled by: Application

Description: This event is sent out if the pen is lifted within the bounds of the
scrollbar object that is entered in the last pen down section.
Application can change the display according to the current value of
the scrollbar.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_SCROLLBAR_SELECT
eventID = the object ID of the SCROLLBAR object
para1 = current value of the scrollbar
para2 = current value of the scrollbar
evtPBP = pointer to the memory of  the SCROLLBAR 

object



2h) Events of Table

EVT_TABLE_ENTER
Sent by: TableHandleEvent

Handled by: TableHandleEvent

Description: This event is sent when the TableHandleEvent receives a pen-down
event within the bounds of one of the cell of the table object.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_TABLE_SELECT
eventID = the object ID of the TABLE object
para1 = row number of the cell that absorbs the pen 

down event
para2 = column number of the cell that absorbs the pen 

down event
evtPBP = pointer to the memory of  the table object

EVT_TABLE_EXIT
Sent by: TableHandleEvent

Handled by: TableHandleEvent

Description: TableHandleEvent keeps track of the action of the pen after the
EVT_TABLE_ENTER event is received. If the pen is moved out of
the bounds of the entered cell, EVT_TABLE_EXIT will be sent.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_TABLE_EXIT
eventID = the object ID of the SCROLLBAR object
para1 = row number of the entered cell
para2 = column number of the entered cell
evtPBP = pointer to the memory of  the table object



EVT_TABLE_SELECT
Sent by: TableHandleEvent

Handled by: Application

Description: This event is sent out if the pen is lifted within the bounds of the cell
that is entered in the last pen down section.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_TABLE_ENTER
eventID = the object ID of the TABLE object
para1 = row number of the selected cell
para2 = column number of the selected cell
evtPBP = pointer to the memory of  the table object

2i) Events of Schedule Line

EVT_SCHLINE_ENTER
Sent by: SchlineHandleEvent

Handled by: SchlineHandleEvent

Description: This event is sent when the SchlineHandleEvent receives a pen-down
event within the bounds of one of the section in the object

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_SCHLINE_ENTER
eventID = the object ID of the SCHLINE object
para1 = the section number of the entered region
para2 = NULL
evtPBP = pointer to the memory of  the schedule line 

object



EVT_SCHLINE_EXIT
Sent by: SchlineHandleEvent

Handled by: SchlineHandleEvent

Description: SchlineHandleEvent keeps track of the action of the pen after the
EVT_SCHLINE_ENTER event is received. If the pen is moved out of
the bounds of entered section, EVT_SCHLINE_EXIT will be sent.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_SCHLINE_EXIT
eventID = the object ID of the SCHLINE object
para1 = the section number of the entered region
para2 = NULL
evtPBP = pointer to the memory of  the schedule line 

object

EVT_SCHLINE_SELECT
Sent by: SchlineHandleEvent

Handled by: Application

Description: This event is sent out if the pen is lifted within the bounds of the
section that is entered in the last pen down section.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_SCHLINE_SELECT
eventID = the object ID of the SCHLINE object
para1 = the section number of the selected region
para2 = NULL
evtPBP = pointer to the memory of  the schedule line 

object



2j) Events of Bitmap

EVT_BITMAP_ENTER
Sent by: BitmapHandleEvent

Handled by: BitmapHandleEvent

Description: This event is sent when the BitmapHandleEvent receives a pen-down
event within the bounds of the bitmap object.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_BITMAP_SELECT
eventID = the object ID of the BITMAP object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the bitmap object

EVT_BITMAP_EXIT
Sent by: BitmapHandleEvent

Handled by: BitmapHandleEvent

Description: BitmapHandleEvent keeps track of the action of the pen after the
EVT_BITMAP_ENTER event is received. If the pen is moved out of
the bounds of entered section, EVT_BITMAP_EXIT will be sent.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_BITMAP_SELECT
eventID = the object ID of the BITMAP object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the bitmap object



EVT_BITMAP_SELECT
Sent by: BitmapHandleEvent

Handled by: Application

Description: This event is sent out if the pen is lifted within the bounds of the
bitmap object that is entered in the last pen down section.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_BITMAP_SELECT
eventID = the object ID of the BITMAP object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the bitmap object

2k) Events of Textbox

EVT_TEXTBOX_CHANGED
Sent by: TextboxHandleEvent

Handled by: Application

Description: This event is sent to application in order to notify the application about
the change of the content and the change of the displaying screen of
the corresponding textbox object. Therefore, if the text in the textbox
object is changed or the text in the textbox object is scrolled left or
right, this event is sent. After the reception of the event, application
can have enough information to set the parameters of corresponding
scrollbar.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_TEXTBOX_CHANGED
eventID = the object ID of the TEXTBOX object



para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the textbox object

EVT_TEXTBOX_ENTER
Sent by: TextboxHandleEvent

Handled by: TextboxHandleEvent

Description: This event indicates that a pen down event is received within the
bounds of the textbox object. After the EVT_TEXTBOX_ENTER
event is received by the TextboxHandleEvent, insert point will be
disabled and is ready for highlighting.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_TEXTBOX_ENTER
eventID = the object ID of the TEXTBOX object
para1 = the x-coordinate of the current position of the 

pen when it enters the bounds of the textbox 
object

para2 = the y-coordinate of the current position of the 
pen when it enters the bounds of the textbox 
object

evtPBP = pointer to the memory of  the textbox object

EVT_TEXTBOX_JOT_PASTE_STRING
Sent by: Jot Recognition System

Handled by: FormHandleEvent

Description: This event is to paste jot symbol into a textbox object. The insert point
and highlighted region of the textbox object are updated on the screen
and the textbox object is redrawn.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_TEXTBOX_JOT_PASTE_STRING
eventID = the active application ID
para1 = NULL



para2 = NULL
evtPBP = the text to be pasted

EVT_TEXTBOX_MODIFIED
Sent by: TextboxHandleEvent

Handled by: Application

Description: This event is sent to application in order to notify the application about
the change of the content of the corresponding textbox object.
Therefore, if the text in the textbox object is changed, this event is
sent. After the reception of the event, application can have enough
information to set the parameters of corresponding scrollbar. This
event can be used to check whether the content is modified or not.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_TEXTBOX_MODIFIED
eventID = the object ID of the TEXTBOX object
para1 = NULL
para2 = NULL
evtPBP = pointer to the memory of  the textbox object

EVT_TEXTBOX_SELECT
Sent by: TextboxHandleEvent

Handled by: Application

Description: This event indicates that a pen up event is received while a pen down
event for that textbox object was already received. This event gives a
chance the application to proceed a section of codes under the selected
condition.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_TEXTBOX_SELECT
eventID = the object ID of the TEXTBOX object
para1 = NULL
para2 = NULL



evtPBP = pointer to the memory of  the textbox object

2l) Events of Keyboard

EVT_KEY
Sent by: KeyboardHandleEvent

Handled by: Application

Description: This event is sent out if the pen is lifted within the bounds of the
entered key on the software keyboard that is entered in the last pen
down section.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_KEY
eventID = SOFT_KEY
para1 = NULL if the ASCII code of the clicked key is 

not between 32 to 255. Otherwise, the correct 
ASCII code of the clicked key is put in para1

para2 = the lowest 16 bits of para2 are used
the lowest 8 bits are used if the ASCII code the 
clicked key is smaller than 32. Otherwise, it will
be set to NULL
for the next lowest 8 bits,
bit 0 = CTRL
bit 1 = ALT
bit 2 = SHIFT
bit 3 = CAP
bit 4 = International
if any one of those keys is set, the 
corresponding bit(s) will be set corresponding 
too

evtPBP = NULL

EVT_KEYBOARD_ENTER



Sent by: KeyboardHandleEvent

Handled by: KeybardHandleEvent

Description: This event is sent when the KeyboardHandleEvent receives a pen-
down event within the bounds of one of the key on the software
keyboard.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_KEYBOARD_ENTER
eventID = NULL
para1 = mapped ASCII code of the entered key on the 

keyboard
para2 = NULL
evtPBP = NULL

EVT_KEYBOARD_EXIT
Sent by: KeyboardHandleEvent

Handled by: KeyboardHandleEvent

Description: KeyboardHandleEvent keeps track of the action of the pen after the
EVT_KEYBOARD_ENTER event is received. If the pen is moved
out of the bounds of entered key button on the software keyboard,
EVT_KEYBOARD_EXIT will be sent.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_KEYBOARD_EXIT
eventID = NULL
para1 = mapped ASCII code of the previous entered key

on the keyboard
para2 = NULL
evtPBP = NULL

EVT_KEYBOARD_STATUS
Sent by: HardwareButtonHandleEvent



Handled by: Application

Description: HardwareButtonHandleEvent sends this event whenever the software
keyboard is pop up or closed. The application should do the redrawing
of the form on the screen whenever the keyboard is popup or closed.
Therefore, this is a notification event.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_KEYBOARD_STATUS
eventID = NULL
para1 = KEYBOARD_ON if the keyboard is now on

KEYBOARD_OFF if the keyboard is now off
para2 = NULL
evtPBP = NULL

2m) Events of Inlay

EVT_INLAY_ENTER
Sent by: InlayHandleEvent

Handled by: InlayHandleEvent

Description: This event is sent when the InlayHandleEvent receives a pen-down
event within the bounds of one of the inlay button.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_INLAY_ENTER
eventID = 0
para1 = INLAY_KEYBOARD or

INLAY_OK or
INLAY_EXIT or
INLAY_MENU or
INLAY_CALCUALTOR or
INLAY_MAIN_MENU or
INLAY_LEFT or
INLAY_RIGHT

para2 = 0
evtPBP = NULL



EVT_INLAY_EXIT
Sent by: InlayHandleEvent

Handled by: InlayHandleEvent

Description: InlayHandleEvent keeps track of the action of the pen after the
EVT_INLAY_ENTER event is received. If the pen is moved out of
the bounds of entered section, EVT_INLAY_EXIT will be sent.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_INLAY_EXIT
eventID = 0
para1 = INLAY_KEYBOARD or

INLAY_OK or
INLAY_EXIT or
INLAY_MENU or
INLAY_CALCUALTOR or
INLAY_MAIN_MENU or
INLAY_LEFT or
INLAY_RIGHT

para2 = 0
evtPBP = NULL

EVT_INLAY_SELECT
Sent by: InlayHandleEvent

Handled by: Application

Description: This event is sent out if the pen is lifted within the bounds of the
section that is entered in the last pen down section. By checking this
event, the application can know what inlay button is pressed.

Data passed by
event:

The following shows the required data that is passed with the event

eventType = EVT_INLAY_SELECT
eventID = 0
para1 = INLAY_KEYBOARD or

INLAY_OK or



INLAY_EXIT or
INLAY_MENU or
INLAY_CALCUALTOR or
INLAY_MAIN_MENU or
INLAY_LEFT or
INLAY_RIGHT

para2 = 0
evtPBP = NULL


