
MQAUSXMQAUSX
Programming GuideProgramming Guide

Capitalware Inc.
Unit 11, 1673 Richmond Street, PMB524

London, Ontario  N6G2N3
Canada

sales@capitalware.com
https://www.capitalware.com



Last Updated: January 2021.
© Copyright Capitalware Inc. 2005, 2021.

MQAUSX Programming Guide                                                                                                        Page ii



Table of Contents

1 INTRODUCTION.......................................................................................................................1

1.1 OVERVIEW...............................................................................................................................1
1.1.1 Client-Side Security Exit..............................................................................................1
1.1.2 Server-Side Security Exit.............................................................................................1

1.2 CONTEXT DIAGRAM (LOGICAL VIEW).........................................................................................4
1.3 SECURITY MESSAGE FLOW (LOGICAL VIEW)................................................................................4

2 PROCEDURAL LANGUAGES................................................................................................5

2.1 CWMQCONN - WRAPPER FOR MQCONN............................................................................6
2.1.1 Syntax...........................................................................................................................6
2.1.2 Parameters...................................................................................................................6
2.1.3 Language Invocations..................................................................................................7

2.2 MQCONNX..........................................................................................................................8
2.2.1 Syntax...........................................................................................................................8
2.2.2 Parameters...................................................................................................................8
2.2.3 Language Invocations..................................................................................................9

2.3 CWMQCONNX - WRAPPER FOR MQCONNX....................................................................11
2.3.1 Syntax.........................................................................................................................11
2.3.2 Parameters.................................................................................................................11
2.3.3 Language Invocations................................................................................................12

2.4 MQCONNX USING MQCSP................................................................................................14
2.4.1 Syntax.........................................................................................................................14
2.4.2 Parameters.................................................................................................................14
2.4.3 Language Invocations................................................................................................15

3 C++ LANGUAGE.....................................................................................................................17

3.1 MQAUSXCLIENT CLASS......................................................................................................18
3.1.1 Syntax.........................................................................................................................18
3.1.2 Parameters.................................................................................................................18
3.1.3 Language Invocations................................................................................................19

3.2 IMQQUEUEMANAGER AND IMQCHANNEL (MQCONNX)...........................................................20
3.2.1 Syntax.........................................................................................................................20
3.2.2 Parameters.................................................................................................................20
3.2.3 Language Invocations................................................................................................21

3.3 IMQQUEUEMANAGER AND IMQCHANNEL (MQCONNX)...........................................................22
3.3.1 Syntax.........................................................................................................................22
3.3.2 Parameters.................................................................................................................22
3.3.3 Language Invocations................................................................................................23

3.4 IMQQUEUEMANAGER AND IMQCHANNEL WITH MQCSP (MQCONNX).....................................24
3.4.1 Syntax.........................................................................................................................24
3.4.2 Parameters.................................................................................................................24
3.4.3 Language Invocations................................................................................................25

4 JAVA LANGUAGE..................................................................................................................26

4.1 IBM MQ BASE JAVA.............................................................................................................27
4.1.1 Syntax.........................................................................................................................27

MQAUSX Programming Guide                                                                                                        Page iii



4.1.2 Parameters.................................................................................................................27
4.1.3 Exceptions..................................................................................................................27
4.1.4 Language Invocations................................................................................................28

4.2 IBM MQ BASE JMS.............................................................................................................30
4.2.1 Syntax.........................................................................................................................30
4.2.2 Parameters.................................................................................................................30
4.2.3 Exceptions..................................................................................................................30
4.2.4 Language Invocations................................................................................................31

5 .NET C-SHARP LANGUAGE................................................................................................32

5.1 MANAGED .NET ENVIRONMENT...............................................................................................33
5.1.1 Syntax.........................................................................................................................33
5.1.2 Parameters.................................................................................................................33
5.1.3 Exceptions..................................................................................................................33
5.1.4 Language Invocations................................................................................................34

6 APPENDIX A – SAMPLE CLIENT CHANNEL TABLE...................................................35

6.1 WINDOWS..............................................................................................................................35
6.2 UNIX AND LINUX FOR IBM MQ 32-BIT...................................................................................35
6.3 UNIX AND LINUX FOR IBM MQ 64-BIT...................................................................................35
6.4 JAVA APPLICATIONS................................................................................................................35

7 APPENDIX B – SAMPLE MQJNDI......................................................................................36

7.1 JMS QUEUE CONNECTION FACTORY (QCF) SAMPLE:................................................................36
7.2 JMS QUEUE SAMPLE:.............................................................................................................36

8 APPENDIX C – MQAUSX LANGUAGE FILES..................................................................37

8.1 MQAUSX C SAMPLE FILES..................................................................................................38
8.1.1 List of C sample files..................................................................................................38

8.2 MQAUSX C++ SAMPLE FILES..............................................................................................39
8.2.1 List of C++ sample files............................................................................................39

8.3 MQAUSX BASE JAVA & JMS SAMPLE FILES.........................................................................40
8.3.1 List of Java sample files.............................................................................................40
8.3.2 List of Java/JMS sample files.....................................................................................41

8.4 .NET C-SHARP SAMPLE FILES................................................................................................42
8.4.1 List of .NET C-Sharp sample files.............................................................................42

8.5 MQAUSX VISUAL BASIC SAMPLE FILES.................................................................................43
8.5.1 List of Visual Basic sample files................................................................................43

9 APPENDIX D – LICENSE AGREEMENT...........................................................................44

10 APPENDIX E – NOTICES....................................................................................................46

MQAUSX Programming Guide                                                                                                        Page iv



1 Introduction

1.1 Overview

MQ Authenticate User Security Exit (MQAUSX) is solution that allows a company to fully 
authenticate a user who is accessing a IBM MQ resource.  It authenticates the user's UserId and 
Password (and possibly Domain Name) against the server's native OS system, LDAP server, 
Microsoft's Active Directory, Quest Authentication Services, Centrify's DirectControl, 
Unix/Linux PAM (Pluggable Authentication Module) or an encrypted MQAUSX FBA file. 

The security exit will operate with IBM MQ v7.0, v7.1, v7.5, v8.0, v9.0, v9.1 and v9.2 in 
Windows, Unix and Linux environments. It works with Server Connection, Client Connection, 
Sender, Receiver, Server and Requestor channels of IBM MQ queue manager. 

The MQ Authenticate User Security Exit solution is comprised of 2 components: client-side 
security exit and server-side security exit.

1.1.1 Client-Side Security Exit

The client-side security exit first checks if the server-side exit is defined for the particular 
channel. The client-side exit will receive a security token to be used in the encryption process of 
the user's password.  It will prompt the user for his / her UserId and Password (and domain name
for Windows), encrypt the data and send it to the server-side security exit.

For each connection attempt, the server-side security exit will verify that it is an acceptable client
exit attempting the connection.  If so, then the server-side will send a unique security token.  
When the server-side security exit receives the encrypted data, it will decrypt the incoming data 
and then perform UserId and Password (and domain) authentication against the native OS 
system, LDAP server, Microsoft's Active Directory, Quest Authentication Services, Centrify's 
DirectControl, Unix/Linux PAM (Pluggable Authentication Module) or an encrypted MQAUSX 
FBA file.  If successful, the connection will be allowed. 

1.1.2 Server-Side Security Exit

The server-side security exit supports the concept of 'Proxy IDs'.  After a user has been 
successfully authenticated against the native OS system, LDAP server, Microsoft's Active 
Directory, Quest Authentication Services, Centrify's DirectControl, Unix/Linux PAM (Pluggable
Authentication Module) or an encrypted MQAUSX FBA file and the 'Proxy Mode' flag is set, 
then the server-side security exit will look up the user's UserID in the Proxy file for their Proxy 
ID.  The Proxy ID will be used for all MQ interactions.

An MQAdmin can define a password for a queue manager.  Hence, when enabled, a back-end 
application and/or end-user would need to not only know their UserID and Password but also the
queue manager’s Password to successfully log in.  Defining and requiring a queue manager 
Password in MQAUSX is equivalent to adding perimeter security to your system.

MQAUSX Programming Guide                                                                                                        Page 1



The server-side security exit has the ability to allow or restrict users from logging in with the 
'mqm' or 'MUSR_MQADMIN' or 'QMQM' UserIDs.  This is controlled by the server-side 
security exit's property keyword 'Allowmqm'.

The server-side security exit has the capability to allow or limit the incoming channel 
connections according to the name of the associated Server Connection channel (SVRCONN).  
Each Server Connection channel can be allocated a maximum number of connections and the 
server-side security exit will ensure that this maximum is not exceeded.

Client connections to a queue manager are limited by either channel name or the 'DefaultMCC' 
property keyword in the initialization file.  In today's use of J2EE applications, it is a possibility 
that one J2EE application could overwhelm the queue manager with client connections, thus 
preventing any connections being made from other applications.

The MQAdmin can enable Excessive Client Connections alerting system that counts the number 
of connections over a period of time (i.e. Day / Hour / Minute) and writes a message to the log 
when the count exceeds a particular value. If the keyword WriteToEventQueue is set to ‘Y’ then 
an event message is also written to an event queue. ECC feature is designed to catch applications
that are poorly written, for example, applications that continuously connect and disconnect from 
the queue manager for every message sent or received.

The server-side security exit has the ability to allow or restrict the incoming IP address, 
hostname and/or SSL DN.  The server-side security exit uses a regular expression parser to parse
the incoming client IP address, hostname, and/or SSL DN against a predefined regular 
expression pattern.

The server-side security exit has the ability to allow or restrict the incoming UserID against a 
group.  A list of groups can be queried for the incoming UserID.  The groups can be in the local 
OS or a group file.  If MQAUSX is authenticating against an LDAP server then the group 
querying can be against the LDAP server.

For those channels where authentication is not required, the server-side security exit can be set to
not perform this function. This is controlled by the server-side security exit's property keyword 
'NoAuth'.

The server-side security exit, when in non-authentication mode, has the ability to allow or restrict
users from connecting with a blank UserID value.  This is controlled by the server-side security 
exit's property keyword 'AllowBlankUserID'.

The server-side security exit, when in non-authentication mode, has the ability to allow or restrict
the incoming UserID.  The server-side security exit uses a regular expression parser to parse the 
incoming client UserID against a predefined regular expression pattern.

Note: Raspberry Pi is a Linux ARM 32-bit OS (Operating System).  Hence, simply follow the 
Linux 32-bit instructions for installing and using the solution on a Raspberry Pi.

MQAUSX Programming Guide                                                                                                        Page 2



MQAUSX is 4 products in 1

1. If the client application is configured with the client-side security exit then the user 
credentials are encrypted and sent to the remote queue manager. This is the best level of 
security.

2. If the client application is not configured with the client-side security exit and the client-
side AND server-side are at MQ V8 then MQ V8 will encrypt the user credentials as they
flow from the client application to the queue manager. 

3. If the client application is not configured with the client-side security exit then the user 
credentials are sent in plain text to the remote queue manager. This feature is available 
for Java/JMS, Java and C# DotNet client applications. For native applications (i.e. C/C+
+), then the application must use and populate the MQCSP structure with the UserID and 
Password.

• Using MQAUSX with No Client-side Security Exit - Part 1 (coding examples) 
http://www.capitalware.com/rl_blog/?p=638

• Using MQAUSX with No Client-side Security Exit - Part 2 (configuring tools like
MQ Explorer, SupportPac MO71, MQ Visual Edit, etc..) 
http://www.capitalware.com/rl_blog/?p=659

4. If the MQAdmin sets the MQAUSX IniFile parameter NoAuth to Y then it functions just 
like MQ Standard Security Exit (MQSSX).  MQSSX does not authenticate. It filters the 
incoming connection based on UserID, IP address, hostname and/or SSL DN.

MQAUSX Programming Guide                                                                                                        Page 3



1.2 Context Diagram (Logical View)

1.3 Security Message Flow (Logical View)

MQAUSX Programming Guide                                                                                                        Page 4



2 Procedural Languages 
For Procedural Languages, C and Visual Basic, the programmer has 4 different methods to set 
the UserId and Password for authentication by the MQAUSX server-side security exit.  

If the programmer's application uses the MQCONN API, the MQCONN API can be replaced 
with the CWMQCONN wrapper using the following method:

1. CWMQCONN, the wrapper for MQCONN API, will pass the UserId and Password 
directly to the MQAUSX client-side security exit.  It is assumed that the user has 
previously set up an entry in a client channel table for use by their application when using
CWMQCONN.

If the programmer's application uses the MQCONNX API, there are 3 choices on how to pass the
UserId and Password for authentication.  Two of three methods include a newly written API 
wrapper that replaces the MQCONN and MQCONNX API calls.

1. Use MQCONNX API to pass the UserId and Password via the SecurityUserData field.

2. CWMQCONNX, the wrapper for MQCONNX API, will pass the UserId and Password 
directly to the MQAUSX client-side security exit.

3. MQCONNX API using MQCSP does NOT interact with the MQAUSX client-side 
security but instead connects directly to the MQAUSX server-side security exit.  Hence, 
the password will not be encrypted.

MQAUSX Programming Guide                                                                                                        Page 5



2.1 CWMQCONN - Wrapper for MQCONN
This section describes how to use the MQAUSX wrapper (CWMQCONN) for MQCONN to 
pass the UserId and Password to MQAUSX client-side security exit.  The CWMQCONN call 
replaces the MQCONN API call so that the UserId and Password is passed to the MQAUSX 
client-side security exit and then invokes the MQCONN API for the calling application.

2.1.1 Syntax

CWMQCONN(UserId, 
Password, 
QMName, 
QMPassword, 
HConn, 
CompCode, 
Reason)

2.1.2 Parameters
The CWMQCONN call has the following parameters as described below: UserId, Password, 
QMName, HConn, CompCode and Reason.

 UserId (char 32) - input
A UserId to be authenticated by the MQAUSX server-side security exit 

 Password (char 32) - input
The Password to be authenticated by the MQAUSX server-side security exit 

 QMName (char 48) - input
The name of the queue manager to which the application wants to connect

 QM Password (char 32) - input
The Queue Manager password to be authenticated by the MQAUSX server-side security exit 

 HConn (MQHCONN) - output
This handle represents the connection to the queue manager. 

 CompCode (MQLONG) - output
The completion code of the MQCONN API call 

 Reason (MQLONG) - output
The reason code of the MQCONN API call

MQAUSX Programming Guide                                                                                                        Page 6



2.1.3 Language Invocations
The CWMQCONN call is supported in the programming languages (C and Visual Basic) as 
shown below.  It is assumed that the user has previously set up an entry in a client channel table 
for use by the user's application.

2.1.3.1 C Language

MQHCONN HConn;    
MQLONG CompCode;
MQLONG Reason; 
char QMName[MQ_Q_MGR_NAME_LENGTH+1]; 
char QMPassword[32+1];
char UserId[32+1]; 
char Password[32+1];

CWMQCONN (UserId, 
Password, 
QMName,
QMPassword 
&HConn, 
&CompCode, 
&Reason);

2.1.3.2 Visual Basic Language

Dim QMName As String
Dim QMPassword As String
Dim Hconn As Long
Dim CompCode As Long
Dim Reason As Long        
Dim UserId As String  
Dim Password As String

CWMQCONN UserId, Password, QMName, QMPassword, Hconn, CompCode, Reason

MQAUSX Programming Guide                                                                                                        Page 7



2.2 MQCONNX
This section describes how to use MQCONNX API to pass the UserId and Password to 
MQAUSX client-side security exit.  

2.2.1 Syntax

MQCONNX (QMName, ConnectOptions,  HConn, CompCode, Reason)

2.2.2 Parameters
The MQCONNX call has the following parameters as described below: QMName, 
ConnectOptions , HConn, CompCode and Reason.

 QMName (char 48) - input
The name of the queue manager to which the application wants to connect

 ConnectOptions (MQHCONN) – input / output
The ConnectOptions allows the application to specify options relating to the connection to the 
queue manager.

 HConn (MQHCONN) - output
This handle represents the connection to the queue manager. 

 CompCode (MQLONG) - output
The completion code of the MQCONN API call 

 Reason (MQLONG) - output
The reason code of the MQCONN API call

MQAUSX Programming Guide                                                                                                        Page 8



2.2.3 Language Invocations
The MQCONNX API call is supported in the following programming languages (C and Visual 
Basic) as shown below.

2.2.3.1 C Language

MQCNO     ConnectOptions = {MQCNO_DEFAULT};      
MQCD      ClientConn = {MQCD_CLIENT_CONN_DEFAULT};
MQHCONN HConn;    
MQLONG CompCode;
MQLONG Reason; 
char QMName[MQ_Q_MGR_NAME_LENGTH+1]; 
char      channelName[MQ_CHANNEL_NAME_LENGTH+1];
char      hostname[1024];                       
char      exitName[1024]="C:\\Capitalware\\MQAUSX\\mqausxclnt(ClntExit)" 
char      securityData[1024]; 
char UserId[32+1]; 
char Password[32+1];

strncpy(ClientConn.ConnectionName,
        hostname, MQ_CONN_NAME_LENGTH);                          
                                                 
strncpy(ClientConn.ChannelName,                  
        channelName, MQ_CHANNEL_NAME_LENGTH);                 
                                                 
strncpy(ClientConn.SecurityExit,                 
         exitName, MQ_EXIT_NAME_LENGTH);                   
                                                 
/* Specify UserId & Password explicitly. Max of 32 chars.*/
memset(securityData, '\0', sizeof(securityData));
sprintf(securityData, "u=%s;p=%s", UserId, Password);            
                                                 
memcpy(ClientConn.SecurityUserData,              
       securityData, MQ_EXIT_DATA_LENGTH);                     
                                                 
ConnectOptions.ClientConnPtr = &ClientConn;     
ConnectOptions.Version = MQCNO_VERSION_6;       

MQCONNX (QMName, 
&ConnectOptions,
&HConn, 
&CompCode, 
&Reason);

MQAUSX Programming Guide                                                                                                        Page 9



2.2.3.2 Visual Basic Language

Dim CNOCD As MQCNOCD 
Dim QMName As String
Dim Hconn As Long
Dim CompCode As Long
Dim Reason As Long        
Dim UserId As String  
Dim Password As String

MQCNOCD_DEFAULTS CNOCD                                           
                                                                 
CNOCD.ChannelDef.ConnectionName = GUI_hostname.Text 
CNOCD.ChannelDef.ChannelName = GUI_chlName.Text 
CNOCD.ChannelDef.Version = MQCD_CURRENT_VERSION
CNOCD.ChannelDef.SecurityExit = "C:\Capitalware\MQAUSX\mqausxclnt(ClntExit)"
CNOCD.ChannelDef.SecurityUserData = "u=" & UserId & ";p=" & Password
                                                                 
MQCONNXAny QMName, CNOCD, Hconn, CompCode, Reason 

MQAUSX Programming Guide                                                                                                        Page 10



2.3 CWMQCONNX - Wrapper for MQCONNX
This section describes how to use the MQAUSX wrapper (CWMQCONNX) for MQCONNX to 
pass the UserId and Password to the MQAUSX client-side security exit.  CWMQCONNX call 
replaces the MQCONNX API call so that the UserId and Password is passed to the MQAUSX 
client-side security exit to invoke the MQCONNX API for the calling application.

2.3.1 Syntax

CWMQCONNX(UserId, 
    Password, 
    QMName, 
    QMPassword, 
    HConn, 
   CompCode, 
   Reason)

2.3.2 Parameters
The CWMQCONNX call has the following parameters as described below: UserId, Password, 
QMName, HConn, CompCode and Reason.

 UserId (char 32) - input
A UserId to be authenticated by the MQAUSX server-side security exit 

 Password (char 32) - input
The Password to be authenticated by the MQAUSX server-side security exit 

 QMName (char 48) - input
The name of the queue manager to which the application wants to connect

 QMPassword (char 32) - input
The Queue Manager password to be authenticated by the MQAUSX server-side security exit 

 HConn (MQHCONN) - output
This handle represents the connection to the queue manager. 

 CompCode (MQLONG) - output
The completion code of the MQCONN API call 

 Reason (MQLONG) - output
The reason code of the MQCONN API call

MQAUSX Programming Guide                                                                                                        Page 11



2.3.3 Language Invocations
The CWMQCONNX call is supported in the following programming languages (C and Visual 
Basic) as shown below.

2.3.3.1 C Language

MQCNO     ConnectOptions = {MQCNO_DEFAULT};      
MQCD      ClientConn = {MQCD_CLIENT_CONN_DEFAULT};
MQHCONN HConn;    
MQLONG CompCode;
MQLONG Reason; 
char QMName[MQ_Q_MGR_NAME_LENGTH+1]; 
char QMPassword[32+1];
char      channelName[MQ_CHANNEL_NAME_LENGTH+1];
char      hostname[1024];                       
char      exitName[1024]="C:\\Capitalware\\MQAUSX\\mqausxclnt(ClntExit)" 
char UserId[32+1]; 
char Password[32+1];

strncpy(ClientConn.ConnectionName,
        hostname, MQ_CONN_NAME_LENGTH);                          
                                                 
strncpy(ClientConn.ChannelName,                  
        channelName, MQ_CHANNEL_NAME_LENGTH);                 
                                                 
strncpy(ClientConn.SecurityExit,                 
         exitName, MQ_EXIT_NAME_LENGTH);                   
                                                 
ConnectOptions.ClientConnPtr = &ClientConn;     
ConnectOptions.Version = MQCNO_VERSION_2;       

CWMQCONNX(UserId,
          Password,
          QMName, 
          QMPassword,

&ConnectOptions,
&HConn, 
&CompCode, 
&Reason);

MQAUSX Programming Guide                                                                                                        Page 12



2.3.3.2 Visual Basic Language

Dim CNOCD As MQCNOCD 
Dim QMName As String
Dim QMPassword As String
Dim Hconn As Long
Dim CompCode As Long
Dim Reason As Long        
Dim UserId As String  
Dim Password As String

MQCNOCD_DEFAULTS CNOCD                                           
                                                                 
CNOCD.ChannelDef.ConnectionName = GUI_hostname.Text              
CNOCD.ChannelDef.ChannelName = GUI_chlName.Text
CNOCD.ChannelDef.Version = MQCD_CURRENT_VERSION 
CNOCD.ChannelDef.SecurityExit = "C:\Capitalware\MQAUSX\mqausxclnt(ClntExit)"
                                                                 
CWMQCONNX UserId, Password, QMName, QMPassword, CNOCD, Hconn, CompCode, Reason

MQAUSX Programming Guide                                                                                                        Page 13



2.4 MQCONNX using MQCSP
This section describes how to use MQCONNX API with MQCSP to pass the UserId and 
Password to MQAUSX server-side security exit.  The MQAUSX client-side security exit is not 
involved with this interaction; hence, the Password is not encrypted between the application and 
the remote queue manager.

2.4.1 Syntax

MQCONNX (QMName, ConnectOptions,  HConn, CompCode, Reason)

2.4.2 Parameters
The MQCONNX call has the following parameters as described below: QMName, 
ConnectOptions , HConn, CompCode and Reason.

 QMName (char 48) - input
The name of the queue manager to which the application wants to connect

 ConnectOptions (MQHCONN) – input / output
The ConnectOptions allows the application to specify options relating to the connection to the 
queue manager.

 HConn (MQHCONN) - output
This handle represents the connection to the queue manager. 

 CompCode (MQLONG) - output
The completion code of the MQCONN API call 

 Reason (MQLONG) - output
The reason code of the MQCONN API call

MQAUSX Programming Guide                                                                                                        Page 14



2.4.3 Language Invocations
The MQCONNX API call is supported in the following programming languages (C and Visual 
Basic) as shown below.

2.4.3.1 C Language

MQCNO     ConnectOptions = {MQCNO_DEFAULT};      
MQCD      ClientConn = {MQCD_CLIENT_CONN_DEFAULT};
MQCSP     mqCSP = {MQCSP_DEFAULT};
MQHCONN HConn;    
MQLONG CompCode;
MQLONG Reason; 
char QMName[MQ_Q_MGR_NAME_LENGTH+1]; 
char      channelName[MQ_CHANNEL_NAME_LENGTH+1];
char      hostname[1024];                       
char UserId[32+1]; 
char Password[32+1];

strncpy(ClientConn.ConnectionName,
        hostname, MQ_CONN_NAME_LENGTH);                          
                                                 
strncpy(ClientConn.ChannelName,                  
        channelName, MQ_CHANNEL_NAME_LENGTH);                 
                                                 
mqCSP.AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD;   

mqCSP.CSPUserIdPtr = &UserId;                          
mqCSP.CSPUserIdOffset = 0;                               
mqCSP.CSPUserIdLength = strlen(UserId);                
                                                         
mqCSP.CSPPasswordPtr = &Password;                      
mqCSP.CSPPasswordOffset = 0;                             
mqCSP.CSPPasswordLength = strlen(Password);            
                                                         
ConnectOptions.SecurityParmsPtr = &mqCSP; 
ConnectOptions.SecurityParmsOffset = 0;                          
ConnectOptions.ClientConnPtr = &ClientConn; 
ConnectOptions.Version = MQCNO_VERSION_2; 

MQCONNX (QMName, 
&ConnectOptions,
&HConn, 
&CompCode, 
&Reason);

MQAUSX Programming Guide                                                                                                        Page 15



2.4.3.2 Visual Basic Language

Dim CNOCD As MQCNOCD 
Dim CSP As MQCSP 
Dim QMName As String
Dim Hconn As Long
Dim CompCode As Long
Dim Reason As Long        
Dim UserId As String  
Dim Password As String

MQCNOCD_DEFAULTS CNOCD                                           
MQCSP_DEFAULTS CSP                                               
                                                                 
CNOCD.ChannelDef.ConnectionName = GUI_hostname.Text              
CNOCD.ChannelDef.ChannelName = GUI_chlName.Text 
CNOCD.ChannelDef.Version = MQCD_CURRENT_VERSION   

CSP.AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD

CSP.CSPUserIdPtr = StrPtr(UserId)
CSP.CSPUserIdOffset = 0
CSP.CSPUserIdLength = Len(UserId)

CSP.CSPPasswordPtr = StrPtr(Password)
CSP.CSPPasswordOffset = 0
CSP.CSPPasswordLength = Len(Password)

CNOCD.ConnectOpts.SecurityParmsPtr = CSP
CNOCD.ConnectOpts.SecurityParmsOffset = 0
                                                                 
MQCONNXAny QMName, CNOCD, Hconn, CompCode, Reason 

MQAUSX Programming Guide                                                                                                        Page 16



3 C++ Language
For the C++ Language, the programmer has 4 different methods to set the UserId and Password 
for authentication by the MQAUSX server-side security exit.  A new C++ class 
(MQAUSXClient) was written to pass the UserId and Password to the MQAUSX client-side 
security exit.

If the programmer's application uses the ImqQueueManager class, the MQAUSXCLient class 
needs to be used.

1. The MQAUSXCLient class will pass the UserId and Password directly to the MQAUSX 
client-side security exit.

If the programmer's application uses the ImqQueueManager and ImqChannel classes, they have 
the following 3 choices on how to pass the UserId and Password for authentication:

1. For the ImqQueueManager and ImqChannel classes, the UserId and Password can be 
passed via the SecurityUserData field to the MQAUSX client-side security exit.

2. For the ImqQueueManager and ImqChannel classes, the UserId and Password can be 
passed via the setUserId and setPassword methods of ImqChannel class, to the 
MQAUSX client-side security exit.

3. For the ImqQueueManager and ImqChannel classes using the MQCSP class, the UserId 
and Password can be passed directly to the MQAUSX server-side security exit.  In this 
scenario, the application does NOT interact with the MQAUSX client-side security; 
hence, the password will not be encrypted.

MQAUSX Programming Guide                                                                                                        Page 17



3.1 MQAUSXClient Class
This section describes how to use the MQAUSXClient class to pass the UserId and Password to 
MQAUSX client-side security exit.  Use the setCredentials method of the MQAUSXClient class 
to pass the UserId and Password to the MQAUSX client-side security exit.

3.1.1 Syntax

mqausx = new MQAUSXClient;
mqausx->setCredentials(UserId, Password, QMName, QMPassword);

3.1.2 Parameters
The MQAUSXClient class has the following parameters as described below: UserId, Password 
and QMName.

 UserId (char 32) - input
A UserId to be authenticated by the MQAUSX server-side security exit 

 Password (char 32) - input
The Password to be authenticated by the MQAUSX server-side security exit 

 QMName (char 48) - input
The name of the queue manager to which the application wants to connect

 QMPassword (char 32) - input
The Queue Manager password to be authenticated by the MQAUSX server-side security exit 

MQAUSX Programming Guide                                                                                                        Page 18



3.1.3 Language Invocations
The MQAUSXClient class is supported in the following programming language (C++) as shown 
below.  It is assumed that the user has previously set up an entry in a client channel table for use 
by the user's application.

3.1.3.1 C++ Language

ImqQueueManager mgr;   
MQAUSXClient *mqausx;
char QMName[MQ_Q_MGR_NAME_LENGTH+1]; 
char QMPassword[32+1];
char UserId[32+1]; 
char Password[32+1];

mgr.setName(QMName); 
mqausx = new MQAUSXClient;

if ((mqausx->setCredentials(UserId, 
   Password, 
   QMName, 
   QMPassword)) != CW_OK)     

{                       
   delete mqausx;       
   return( 1 );         
}
else
{
   if ( ! mgr.connect( ) ) 
   {                       
      delete mqausx;       
      return( 1 );         
   }                       
                        
   delete mqausx;          
}

MQAUSX Programming Guide                                                                                                        Page 19



3.2 ImqQueueManager and ImqChannel (MQCONNX)
This section describes how to use the ImqQueueManager and ImqChannel classes to pass the 
UserId and Password to MQAUSX client-side security exit.  

3.2.1 Syntax

ImqQueueManager mgr;        
ImqChannel *pchannel;
mgr.setName( QMName );                  
pchannel -> setChannelName( ChannelName );   
pchannel -> setConnectionName( ConnName );
pchannel -> setSecurityExitName(ExitName);                                           
pchannel -> setSecurityUserData(SecurityData);

3.2.2 Parameters
The ImqQueueManager and ImqChannel classes require the following parameters as described 
below: QMName, Channelname, ConnName, ExitName and SecurityData.

 QMName (char 48) - input
The name of the queue manager to which the application wants to connect

 ChannelName (char 20) – input
The name of the channel to use for the connection

 ConnName (char 264) - input
The ConnName is the hostname or IP address and Port Number of the remote server where the 
queue manager is located.

 ExitName (char 128) – input
The full path and name of the MQAUSX client-side security exit

 SecurityData (char 32) – input
The security data will contain the UserId and Password that is being passed to the MQAUSX 
client-side security exit.

MQAUSX Programming Guide                                                                                                        Page 20



3.2.3 Language Invocations
The ImqQueueManager and ImqChannel classes are supported in the following programming 
language (C++) as shown below.

3.2.3.1 C++ Language

ImqQueueManager  mgr;         
ImqChannel      *pchannel = 0;

char QMName[MQ_Q_MGR_NAME_LENGTH+1]; 
char QMPassword[32+1];
char      channelName[MQ_CHANNEL_NAME_LENGTH+1];
char      hostname[1024];                       
char      exitName[1024]="C:\\Capitalware\\MQAUSX\\mqausxclnt(ClntExit)" 
char      securityData[1024]; 
char UserId[32+1]; 
char Password[32+1];

mgr.setName(QMName);                  
                                           
pchannel = new ImqChannel ;                
pchannel -> setHeartBeatInterval( 1 );     
pchannel -> setTransportType( MQXPT_TCP ); 
pchannel -> setChannelName(channelName);   
pchannel -> setConnectionName(hostname);
pchannel -> setSecurityExitName(exitName);                       
mgr.setChannelReference( pchannel );       

/* Specify UserId & Password explicitly. Max of 32 chars.*/
memset(securityData, '\0', sizeof(securityData));
sprintf(securityData, "u=%s;p=%s", UserId, Password);            
pchannel -> setSecurityUserData( securityData ); 

if ( ! mgr.connect( ) )
{
  delete pchannel; 
  return( 1 );         
}                      

MQAUSX Programming Guide                                                                                                        Page 21



3.3 ImqQueueManager and ImqChannel (MQCONNX)
This section describes how to use the ImqQueueManager and ImqChannel classes to pass the 
UserId and Password to MQAUSX client-side security exit.  

3.3.1 Syntax

ImqQueueManager mgr;        
ImqChannel *pchannel;
mgr.setName( QMName );                  
pchannel -> setChannelName( ChannelName );   
pchannel -> setConnectionName( ConnName );
pchannel -> setSecurityExitName(ExitName);                                           
pchannel -> setUserId( UserId );              
pchannel -> setPassword( Password );          

3.3.2 Parameters
The ImqQueueManager and ImqChannel classes require the following parameters as described 
below: QMName, ChannelName, ConnName, ExitName, UserId and Password.

 QMName (char 48) - input
The name of the queue manager to which the application wants to connect

 ChannelName (char 20) – input
The name of the channel to use for the connection

 ConnName (char 264) - input
The ConnName is the hostname or IP address and Port Number of the remote server where the 
queue manager is located.

 ExitName (char 128) – input
The full path and name of the MQAUSX client-side security exit

 UserId (char 12***) - input
A UserId to be authenticated by the MQAUSX server-side security exit 

 Password (char 12***) - input
The Password to be authenticated by the MQAUSX server-side security exit.

*** The 12-character limit is an MQ limit and not a limit of MQAUSX.  To pass a longer UserId
or Password, please review the details in section 3.2 or 3.4.

MQAUSX Programming Guide                                                                                                        Page 22



3.3.3 Language Invocations
The ImqQueueManager and ImqChannel classes are supported in the following programming 
language (C++) as shown below.

3.3.3.1 C++ Language

ImqQueueManager  mgr;         
ImqChannel      *pchannel = 0;

char QMName[MQ_Q_MGR_NAME_LENGTH+1]; 
char      channelName[MQ_CHANNEL_NAME_LENGTH+1];
char      hostname[1024];                       
char      exitName[1024]="C:\\Capitalware\\MQAUSX\\mqausxclnt(ClntExit)" 
char UserId[32+1]; 
char Password[32+1];

mgr.setName(QMName);                  
                                           
pchannel = new ImqChannel ;                
pchannel -> setHeartBeatInterval( 1 );     
pchannel -> setTransportType( MQXPT_TCP ); 
pchannel -> setChannelName(channelName);   
pchannel -> setConnectionName(hostname);
pchannel -> setSecurityExitName(exitName);                       
mgr.setChannelReference( pchannel );       

/* Specify UserId & Password via Channel class. Max of 12 chars. */
pchannel -> setUserId( myUserId );              
pchannel -> setPassword( myPassword );          

if ( ! mgr.connect( ) )
{
  delete pchannel; 
  return( 1 );         
}                      

MQAUSX Programming Guide                                                                                                        Page 23



3.4 ImqQueueManager and ImqChannel with MQCSP (MQCONNX)
This section describes how to use ImqQueueManager and ImqChannel classes with MQCSP to 
pass the UserId and Password to MQAUSX server-side security exit.  The MQAUSX client-side 
security exit is not involved with this interaction; hence, the Password is not encrypted between 
the application and the remote queue manager.

3.4.1 Syntax

ImqQueueManager mgr;        
ImqChannel *pchannel;
mgr.setName( QMName );                  
pchannel -> setChannelName( ChannelName );   
pchannel -> setConnectionName( ConnName );
mgr.setAuthenticationType(MQCSP_AUTH_USER_ID_AND_PWD);
mgr.setUserId( UserId );                            
mgr.setPassword( Password );                                 

3.4.2 Parameters
The ImqQueueManager and ImqChannel classes have the following parameters as described 
below: QMName, ChannelName, ConnName, UserId and Password.

 QMName (char 48) - input
The name of the queue manager to which the application wants to connect

 ChannelName (char 20) – input
The name of the channel to use for the connection

 ConnName (char 264) - input
The ConnName is the hostname or IP address and Port Number of the remote server where the 
queue manager is located.

 UserId (char 32) - input
A UserId to be authenticated by the MQAUSX server-side security exit 

 Password (char 32) - input
The Password to be authenticated by the MQAUSX server-side security exit 

MQAUSX Programming Guide                                                                                                        Page 24



3.4.3 Language Invocations
The ImqQueueManager and ImqChannel classes with MQCSP is supported in the following 
programming language (C++) as shown below.

3.4.3.1 C++ Language

ImqQueueManager  mgr;         
ImqChannel      *pchannel = 0;

char QMName[MQ_Q_MGR_NAME_LENGTH+1]; 
char      channelName[MQ_CHANNEL_NAME_LENGTH+1];
char      hostname[1024];                       
char UserId[32+1]; 
char Password[32+1];

mgr.setName(QMName);                  
                                           
pchannel = new ImqChannel ;                
pchannel -> setHeartBeatInterval( 1 );     
pchannel -> setTransportType( MQXPT_TCP ); 
pchannel -> setChannelName(channelName);   
pchannel -> setConnectionName(hostname);
mgr.setChannelReference( pchannel );       

/* Specify UserId and Password via MQCSP */
mgr.setAuthenticationType(MQCSP_AUTH_USER_ID_AND_PWD);
mgr.setUserId( UserId );                            
mgr.setPassword( Password );                        

if ( ! mgr.connect( ) )
{
  delete pchannel; 
  return( 1 );         
}                      

MQAUSX Programming Guide                                                                                                        Page 25



4 Java Language
There are 2 distinct approaches for Java programming for WMQ: IBM MQ base Java and IBM 
MQ base JMS (Java Messaging Service).

If the programmer's application uses the IBM MQ base Java, the MQAUSXJ class must be used 
for authentication.

 The MQAUSXJ class is the MQAUSX client-side security exit for IBM MQ base Java.  
The UserId and Password can be passed directly during the class instantiation. 

If the programmer's application uses the IBM MQ base JMS, the MQAUSXJ2EE class must be 
used for authentication.

 The MQAUSXJ2EE class is the MQAUSX client-side security exit for MQ base JMS.  
The UserId and Password can be passed directly via the createQueueConnection method 
of the QueueConnection class.

MQAUSX Programming Guide                                                                                                        Page 26



4.1 IBM MQ base Java
This section describes how to instantiate MQAUSXJ base Java.  There are three ways to 
instantiate the MQAUSXJ base Java client-side security exit.

4.1.1 Syntax

new MQAUSXJ();
new MQAUSXJ(filename);
new MQAUSXJ(userId, password);
new MQAUSXJ(userId, password, qmPassword);

4.1.2 Parameters
The MQAUSXJ base Java instantiation can include the following parameters as described below:
none or filename or UserId and Password.

4.1.2.1 Filename (String) – input
The filename represents the name of the property file (IniFile) that contains the UserId and 
Password values.  

4.1.2.2 UserId (String) - input
A UserId to be authenticated by the MQAUSX server-side security exit.

4.1.2.3 Password (String) - input
The Password to be authenticated by the MQAUSX server-side security exit. 

4.1.2.4 qmPassword (String) - input
The Queue Manager password to be authenticated by the MQAUSX server-side security exit. 

4.1.3 Exceptions
The following exceptions may be encountered:

 IllegalArgumentException 
Invalid / illegal value supplied as an argument to the call.

 FileNotFoundException 
The specified property file (IniFile) could not be found at the location given.

MQAUSX Programming Guide                                                                                                        Page 27



4.1.4 Language Invocations
The MQAUSXJ base Java only supports the Java programming language.

4.1.4.1 Java Language

Sample #1 does not pass an IniFile or UserId & Password to the MQAUSXJ client-side 
security exit; hence the exit will display a log on pop-up to the end-user.

String qManager;
MQEnvironment.hostname = "10.10.10.10(1414)";
MQEnvironment.channel = "TEST.CHL";
MQEnvironment.securityExit = new MQAUSXJ();

MQQueueManager _qMgr = new MQQueueManager(qManager);

Sample #2 passes an IniFile to the MQAUSXJ class.  The IniFile contains the UserId 
and Password that will be used by the MQAUSXJ client-side security exit.

String qManager;
MQEnvironment.hostname = "10.10.10.10(1414)";
MQEnvironment.channel = "TEST.CHL";
MQEnvironment.securityExit = new MQAUSXJ("C:\\Capitalware\\MQAUSX\\clnt.ini");

MQQueueManager _qMgr = new MQQueueManager(qManager);

Sample #3 passes the UserId and Password directly to the MQAUSXJ client-side 
security exit.

String qManager;
String userID;
String password;
MQEnvironment.hostname = "10.10.10.10(1414)";
MQEnvironment.channel = "TEST.CHL";
MQEnvironment.securityExit = new MQAUSXJ(userId, password);

MQQueueManager _qMgr = new MQQueueManager(qManager);

MQAUSX Programming Guide                                                                                                        Page 28



Sample #4 passes the UserId and Password indirectly via the MQEnvironment class to 
the MQAUSXJ client-side security exit.  Note: The UserId and Password cannot be 
longer than 12 characters; otherwise, MQ will truncate them. 

String qManager;
String userID;
String password;
MQEnvironment.hostname = "10.10.10.10(1414)";
MQEnvironment.channel = "TEST.CHL";
/* Old MQ syle */
MQEnvironment.userID = userID;    
MQEnvironment.password = password;
MQEnvironment.securityExit = new MQAUSXJ();

MQQueueManager _qMgr = new MQQueueManager(qManager);

MQAUSX Programming Guide                                                                                                        Page 29



4.2 IBM MQ base JMS
This section describes how to use the createQueueConnection method of the QueueConnection 
class to pass the UserId and Password to the MQAUSX client-side security exit. 

4.2.1 Syntax

createQueueConnection(userID, password);

4.2.2 Parameters
The createQueueConnection method of the QueueConnection class can include the following 
parameters as described below: UserId and Password.

4.2.2.1 UserId (String) - input
A UserId to be authenticated by the MQAUSX server-side security exit.

4.2.2.2 Password (String) - input
The Password to be authenticated by the MQAUSX server-side security exit. 

4.2.3 Exceptions
The following exceptions may be encountered:

 javax.jms.SecurityException 
The supplied UserId and/or Password is invalid.

MQAUSX Programming Guide                                                                                                        Page 30



4.2.4 Language Invocations
The MQAUSXJ2EE for JMS only supports the Java/JMS programming language.

4.2.4.1 Java/JMS Language

Sample #1 uses a QCF via an MQJNDI entry.  The QCF entry includes the definition for
the MQAUSXJ2EE client-side security exit.  The JMS layer passes the UserId and 
Password to the MQAUSXJ2EE client-side security exit via the createQueueConnection
method of the QueueConnectionFactory.

QueueConnectionFactory qcf;
QueueConnection connection;
String userID;
String password;
Hashtable env = new Hashtable();                               
env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_CONTEXT);        
env.put(Context.PROVIDER_URL, "file:/C:\JNDI\test\mqjndi");

Context ctx = new InitialContext(env);            
qcf = (QueueConnectionFactory) ctx.lookup(myQCF); 
connection = qcf.createQueueConnection(userID, password);

Sample #2 uses a dynamically created QCF.  The programmer must explicitly set the 
MQAUSXJ2EE client-side security exit via the setSecurityExit method of the QCF.  The 
JMS layer passes the UserId and Password to the MQAUSXJ2EE client-side security 
exit via the createQueueConnection method of the QueueConnectionFactory.

MQQueueConnectionFactory mqQCF;
QueueConnection connection;
String qManager;
String userID;
String password;

mqQCF = new MQQueueConnectionFactory();                    
mqQCF.setQueueManager(qManager);          
mqQCF.setHostName("10.10.10.10(1414)");
mqQCF.setChannel("TEST.CHL");
mqQCF.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);     
mqQCF.setSecurityExit("biz.capitalware.mqausx.MQAUSXJ2EE");

connection = mqQCF.createQueueConnection(userID, password);

MQAUSX Programming Guide                                                                                                        Page 31



5 .NET C-Sharp Language
For the .NET C-Sharp Language, the programmer has 3 different methods to set the UserId and 
Password for authentication by the MQAUSX server-side security exit.  Two methods use the 
new MQAUSXDN .NET class under a managed .NET environment and the other method uses 
the native mqausx.dll under an unmanaged .NET environment.

If the programmer's application uses a managed .NET environment, the MQAUSXDN class 
must be used for authentication.

 The MQAUSXDN class is the MQAUSX client-side security exit for a managed .NET 
environment.  The UserId and Password can be passed directly during the class using the 
MQEnvironment class. 

If the programmer's application uses an unmanaged .NET environment, the native mqausx.dll 
must be used for authentication.

 The mqausxclnt.dll is the native MQAUSX client-side security exit for an 
unmanaged .NET environment.  The UserId and Password can be passed directly via the 
SecurityUserData field.

MQAUSX Programming Guide                                                                                                        Page 32



5.1 Managed .NET Environment
This section describes how to instantiate MQAUSXDN class.

5.1.1 Syntax

MQEnvironment.SecurityExit="C:\\Capitalware\\MQAUSX\\mqausxdn.dll(Capitalware.MQAUSXDN)";

5.1.2 Parameters

There are no parameters for the MQAUSXDN class. 

5.1.3 Exceptions

There are no MQAUSXDN exceptions.

MQAUSX Programming Guide                                                                                                        Page 33



5.1.4 Language Invocations
The MQAUSXDN class supports any managed .NET language (e.g. C-Sharp .NET and 
VB.NET).

5.1.4.1 C-Sharp Language

String qManager;
MQEnvironment.Hostname = "10.10.10.10(1414)";
MQEnvironment.Channel = "TEST.CHL";
MQEnvironment.SecurityExit="C:\\Capitalware\\MQAUSX\\
mqausxdn.dll(Capitalware.MQAUSXDN)";

MQEnvironment.UserId = "userID";
MQEnvironment.Password = "password";

MQQueueManager _qMgr = new MQQueueManager(qManager);

MQAUSX Programming Guide                                                                                                        Page 34



6 Appendix A – Sample Client Channel Table
The following are sample Client Channel Table entries that can be used with the sample code for
MQCONN (ImqQueueManager), CWMQCONN or MQQueueManager (see Appendix C for 
sample code).

6.1 Windows

DEFINE CHANNEL('TEST.CHL') CHLTYPE(CLNTCONN) +           
   TRPTYPE(TCP) CONNAME('10.10.10.10(1414)') QMNAME('MQA1') +        
   SCYDATA(' ') SCYEXIT('C:\Capitalware\MQAUSX\mqausxclnt(ClntExit)')

6.2 Unix and Linux for IBM MQ 32-bit

DEFINE CHANNEL('TEST.CHL') CHLTYPE(CLNTCONN) +           
   TRPTYPE(TCP) CONNAME('10.10.10.10(1414)') QMNAME('MQA1') +        
   SCYDATA(' ') SCYEXIT('/var/mqm/exits/mqausxclnt(ClntExit)')

6.3 Unix and Linux for IBM MQ 64-bit

DEFINE CHANNEL('TEST.CHL') CHLTYPE(CLNTCONN) +           
   TRPTYPE(TCP) CONNAME('10.10.10.10(1414)') QMNAME('MQA1') +        
   SCYDATA(' ') SCYEXIT('/var/mqm/exits64/mqausxclnt(ClntExit)')

6.4 Java Applications

DEFINE CHANNEL('TEST.CHL') CHLTYPE(CLNTCONN) +           
   TRPTYPE(TCP) CONNAME('10.10.10.10(1414)') QMNAME('MQA1') +        
   SCYDATA(' ') SCYEXIT('biz.capitalware.mqausx.MQAUSXJE6')

MQAUSX Programming Guide                                                                                                        Page 35



7 Appendix B – Sample MQJNDI
The following are sample MQJNDI entries that can be used by the Java/JMS code samples (see 
Appendix C for sample code):

7.1 JMS Queue Connection Factory (QCF) Sample:

DEFINE QCF(myQCF) QMANAGER(MQA1) CHANNEL(TEST.CHL) 
       HOSTNAME(10.10.10.10) PORT(1414) 
       SECEXIT(biz.capitalware.mqausx.MQAUSXJ2EE) 
       FAILIFQUIESCE(YES) TRANSPORT(CLIENT) 

7.2 JMS Queue Sample:

DEFINE Q(mqs.test.q) QUEUE(TEST.Q1) QMANAGER(MQA1) 
       TARGCLIENT(JMS) FAILIFQUIESCE(YES)

MQAUSX Programming Guide                                                                                                        Page 36



8 Appendix C – MQAUSX Language Files
The following is the directory structure layout followed by the Language files:

Windows Directory Structure Unix Directory Structure

C:
+--Capitalware
   +--MQAUSX    <- Install Directory
      +--samples
         +--c
         +--cpp
         +--cs
         +--java
         +--vb

<Install_Directory>
   +--Capitalware
      +--MQAUSX
         +--samples    
            +--c
            +--cpp
            +--java

MQAUSX Programming Guide                                                                                                        Page 37



8.1 MQAUSX C Sample Files
The MQAUSX C sample files are installed in the following directories:  

Platform Directory
Linux / Unix <Install_Directory>/samples/c/
Windows C:\Capitalware\MQAUSX\samples\c\

8.1.1 List of C sample files

Filename Description
MQTest01.c Demonstrates how to use the CWMQCONN wrapper to connect to a queue 

manager then how to open a queue, put a message to a queue, close the queue 
and disconnect from a queue manager. 

MQTest02.c Demonstrates how to use the CWMQCONN wrapper to connect to a queue 
manager then how to open a queue, get a message from a queue, close the 
queue and disconnect from a queue manager.

MQTest11.c Demonstrates how to use the MQCONNX API with the MQAUSX client-side 
security exit to connect to a queue manager then how to open a queue, put a 
message to a queue, close the queue and disconnect from a queue manager.  
The UserId and Password are set via the SecurityUserData field..

MQTest12.c Demonstrates how to use the MQCONNX API with the MQAUSX client-side 
security exit to connect to a queue manager then how to open a queue, get a 
message from a queue, close the queue and disconnect from a queue manager. 
The UserId and Password are set via the SecurityUserData field.

MQTest21.c Demonstrates how to use the CWMQCONNX wrapper to connect to a queue 
manager then how to open a queue, put a message to a queue, close the queue 
and disconnect from a queue manager. 

MQTest22.c Demonstrates how to use the CWMQCONNX wrapper to connect to a queue 
manager then how to open a queue, get a message from a queue, close the 
queue and disconnect from a queue manager.

MQTest31.c Demonstrates how to use the MQCONNX API and MQCSP structure to 
connect to a queue manager then how to open a queue, put a message to a 
queue, close the queue and disconnect from a queue manager. 

MQTest32.c Demonstrates how to use the MQCONNX API and MQCSP structure to 
connect to a queue manager then how to open a queue, get a message from a 
queue, close the queue and disconnect from a queue manager.

MQAUSX Programming Guide                                                                                                        Page 38



8.2 MQAUSX C++ Sample Files
The MQAUSX C sample files are installed in the following directories:  

Platform Directory
Linux / Unix <Install_Directory>/samples/cpp/
Windows C:\Capitalware\MQAUSX\samples\cpp\

8.2.1 List of C++ sample files

Filename Description
MQTest01.cpp Demonstrates how to use the ImqQueueManager class with the 

MQAUSXClient class to connect to a queue manager then how to open a 
queue, put a message to a queue, close the queue and disconnect from a 
queue manager. 

MQTest02.cpp Demonstrates how to use the ImqQueueManager class with the 
MQAUSXClient class to connect to a queue manager then how to open a 
queue, get a message from a queue, close the queue and disconnect from a 
queue manager.

MQTest11.cpp Demonstrates how to use the ImqQueueManager and ImqChannel classes 
with the MQAUSX client-side security exit to connect to a queue manager 
then how to open a queue, put a message to a queue, close the queue and 
disconnect from a queue manager.  The UserId and Password are set via the 
setSecurityUserData method of the ImqChannel class.

MQTest12.cpp Demonstrates how to use the ImqQueueManager and ImqChannel classes 
with the MQAUSX client-side security exit to connect to a queue manager 
then how to open a queue, get a message from a queue, close the queue and 
disconnect from a queue manager.  The UserId and Password are set via the 
setSecurityUserData method of the ImqChannel class.

MQTest21.cpp Demonstrates how to use the ImqQueueManager and ImqChannel classes 
with the MQAUSX client-side security exit to connect to a queue manager 
then how to open a queue, put a message to a queue, close the queue and 
disconnect from a queue manager.  The UserId and Password are set via the 
setUserId and SetPassword methods of the ImqChannel class.

MQTest22.cpp Demonstrates how to use the ImqQueueManager and ImqChannel classes 
with the MQAUSX client-side security exit to connect to a queue manager 
then how to open a queue, get a message from a queue, close the queue and 
disconnect from a queue manager.  The UserId and Password are set via the 
setUserId and SetPassword methods of the ImqChannel class.

MQTest31.cpp Demonstrates how to use the ImqQueueManager and ImqChannel classes 
along with the MQCSP class to connect to a queue manager then how to 
open a queue, put a message to a queue, close the queue and disconnect from
a queue manager. 

MQTest32.cpp Demonstrates how to use the ImqQueueManager and ImqChannel classes 
along with the MQCSP class to connect to a queue manager then how to 
open a queue, get a message to a queue, close the queue and disconnect from
a queue manager.

MQAUSX Programming Guide                                                                                                        Page 39



8.3 MQAUSX base Java & JMS Sample Files
The MQAUSX base Java and JMS sample files are installed in the following directories:  

Platform Directory
Linux / Unix <Install_Directory>/samples/java/
Windows C:\Capitalware\MQAUSX\samples\java\

8.3.1 List of Java sample files

Filename Description
MQTest01.java Demonstrates how to use the MQQueueManager, MQEnvironment and 

MQAUSXJ class to connect to a queue manager then how to open a queue, 
put a message to a queue, close the queue and disconnect from a queue 
manager. 

MQTest02.java Demonstrates how to use the MQQueueManager, MQEnvironment and 
MQAUSXJ class to connect to a queue manager then how to open a queue, 
get a message from a queue, close the queue and disconnect from a queue 
manager.

MQTest11.java Demonstrates how to use the MQQueueManager, HashTable and 
MQAUSXJ class to connect to a queue manager then how to open a queue, 
put a message to a queue, close the queue and disconnect from a queue 
manager. 

MQTest12.java Demonstrates how to use the MQQueueManager, HashTable and 
MQAUSXJ class to connect to a queue manager then how to open a queue, 
get a message from a queue, close the queue and disconnect from a queue 
manager.

MQTest21.java Demonstrates how to use the MQQueueManager, MQEnvironment and 
MQAUSXJ class to connect to a queue manager then how to open a queue, 
put a message to a queue, close the queue and disconnect from a queue 
manager.  The UserId and Password are set via the MQEnvironment class.

MQTest22.java Demonstrates how to use the MQQueueManager, MQEnvironment and 
MQAUSXJ class to connect to a queue manager then how to open a queue, 
get a message from a queue, close the queue and disconnect from a queue 
manager.  The UserId and Password are set via the MQEnvironment class.

MQTest41.java Demonstrates how to use the MQQueueManager class with a Client 
Channel Table to connect to a queue manager then how to open a queue, 
put a message to a queue, close the queue and disconnect from a queue 
manager.  The UserId and Password are set in the security exit data field of
the Client Channel Table entry.

MQTest42.java Demonstrates how to use the MQQueueManager class with a Client 
Channel Table to connect to a queue manager then how to open a queue, 
get a message from a queue, close the queue and disconnect from a queue 
manager.  The UserId and Password are set in the security exit data field of
the Client Channel Table entry.

MQAUSX Programming Guide                                                                                                        Page 40



8.3.2 List of Java/JMS sample files

Filename Description
MQTestJMS01.java Demonstrates how to use the QueueConnectionFactory (QCF) via 

MQJNDI and MQAUSXJ2EE class to connect to a queue manager then
how to open a queue, put a message to a queue, close the queue and 
disconnect from a queue manager. 

MQTestJMS02.java Demonstrates how to use the QueueConnectionFactory (QCF) via 
MQJNDI and MQAUSXJ2EE class to connect to a queue manager then
how to open a queue, get a message from a queue, close the queue and 
disconnect from a queue manager.

MQTestJMS11.java Demonstrates how to use the QueueConnectionFactory (QCF) and 
MQAUSXJ2EE class to connect to a queue manager then how to open 
a queue, put a message to a queue, close the queue and disconnect from
a queue manager. 

MQTestJMS12.java Demonstrates how to use the QueueConnectionFactory (QCF) and 
MQAUSXJ2EE class to connect to a queue manager then how to open 
a queue, get a message from a queue, close the queue and disconnect 
from a queue manager.

MQAUSX Programming Guide                                                                                                        Page 41



8.4 .NET C-Sharp Sample Files
The MQAUSX .NET C-Sharp sample files are installed in the following directories:  

Platform Directory
Windows C:\Capitalware\MQAUSX\samples\cs\

8.4.1 List of .NET C-Sharp sample files

Filename Description
MQTest01.cs Demonstrates how to use the MQQueueManager, MQEnvironment and 

MQAUSXDN class to connect to a queue manager then how to open a queue,
put a message to a queue, close the queue and disconnect from a queue 
manager.  The UserId and Password are set via the MQEnvironment class.

MQTest02.cs Demonstrates how to use the MQQueueManager, MQEnvironment and 
MQAUSXDN class to connect to a queue manager then how to open a queue,
get a message from a queue, close the queue and disconnect from a queue 
manager.  The UserId and Password are set via the MQEnvironment class.

MQTest11.cs Demonstrates how to use the MQQueueManager, MQEnvironment and 
MQAUSXDN class to connect to a queue manager then how to open a queue,
put a message to a queue, close the queue and disconnect from a queue 
manager.  The UserId and Password are set via the MQEnvironment class.

MQTest12.cs Demonstrates how to use the MQQueueManager, MQEnvironment and 
MQAUSXDN class to connect to a queue manager then how to open a queue,
get a message from a queue, close the queue and disconnect from a queue 
manager. The UserId and Password are set via the MQEnvironment clas.

MQTest31.cs Demonstrates how to use the MQQueueManager, MQCSP and 
MQEnvironment class to connect to a queue manager then how to open a 
queue, put a message to a queue, close the queue and disconnect from a queue
manager.  The UserId and Password are set via the MQEnvironment class.

MQTest32.cs Demonstrates how to use the MQQueueManager, MQCSP and 
MQEnvironment class to connect to a queue manager then how to open a 
queue, get a message from a queue, close the queue and disconnect from a 
queue manager.  The UserId and Password are set via the MQEnvironment 
class.

MQTest41.cs Demonstrates how to use the MQQueueManager class (unmanaged .NET) 
with a Client Channel Table to connect to a queue manager then how to open 
a queue, put a message to a queue, close the queue and disconnect from a 
queue manager.  The UserId and Password are set in the security exit data 
field of the Client Channel Table entry.

MQTest42.cs Demonstrates how to use the MQQueueManager class (unmanaged .NET) 
with a Client Channel Table to connect to a queue manager then how to open 
a queue, get a message from a queue, close the queue and disconnect from a 
queue manager.  The UserId and Password are set in the security exit data 
field of the Client Channel Table entry.

MQAUSX Programming Guide                                                                                                        Page 42



8.5 MQAUSX Visual Basic Sample Files
The MQAUSX Visual Basic sample files are installed in the following directories:  

Platform Directory
Windows C:\Capitalware\MQAUSX\samples\vb\

8.5.1 List of Visual Basic sample files

Filename Description
MQTest01.frm Demonstrates how to use the CWMQCONN wrapper to connect to a queue 

manager then how to open a queue, put a message to a queue, close the 
queue and disconnect from a queue manager. 

MQTest02.frm Demonstrates how to use the CWMQCONN wrapper to connect to a queue 
manager then how to open a queue, get a message from a queue, close the 
queue and disconnect from a queue manager.

MQTest11.frm Demonstrates how to use the MQCONNX API with the MQAUSX client-
side security exit to connect to a queue manager then how to open a queue, 
put a message to a queue, close the queue and disconnect from a queue 
manager. 

MQTest12.frm Demonstrates how to use the MQCONNX API with the MQAUSX client-
side security exit to connect to a queue manager then how to open a queue, 
get a message from a queue, close the queue and disconnect from a queue 
manager.

MQAUSX Programming Guide                                                                                                        Page 43



9 Appendix D – License Agreement
This is a legal agreement between you (either an individual or an entity) and Capitalware Inc. By
opening the sealed software packages (if appropriate) and/or by using the SOFTWARE, you 
agree to be bound by the terms of this Agreement. If you do not agree to the terms of this 
Agreement, promptly return the disk package and accompanying items for a full refund.
SOFTWARE LICENSE

1. GRANT OF LICENSE. This License Agreement (License) permits you to use one copy of the 
software product identified above, which may include user documentation provided in on-line or 
electronic form (SOFTWARE). The SOFTWARE is licensed as a single product, to an 
individual user, or group of users for Muliple User Licenses and Site Licenses. This Agreement 
requires that each user of the SOFTWARE be Licensed, either individually, or as part of a group.
A Multi-User License provides for a specified number of users to use this SOFTWARE at any 
time. This does not provide for concurrent user Licensing. Each user of this SOFTWARE must 
be covered either individually, or as part of a group Multi-User License. The SOFTWARE is in 
use on a computer when it is loaded into the temporary memory (i.e. RAM) or installed into the 
permanent memory (e.g. hard disk) of that computer. This software may be installed on a 
network provided that appropriate restrictions are in place limiting the use to registered users 
only.

2. COPYRIGHT. The SOFTWARE is owned by Capitalware Inc. and is protected by United 
States Of America and Canada copyright laws and international treaty provisions. You may not 
copy the printed materials accompanying the SOFTWARE (if any), nor print copies of any user 
documentation provided in on-line or electronic form. You must not redistribute the registration 
codes provided, either on paper, electronically, or as stored in the files MQAUSX.ini or any 
other form.

3. OTHER RESTRICTIONS. The registration notification provided, showing your authorization 
code and this License is your proof of license to exercise the rights granted herein and must be 
retained by you. You may not rent or lease the SOFTWARE, but you may transfer your rights 
under this License on a permanent basis, provided you transfer this License, the SOFTWARE 
and all accompanying printed materials, retain no copies, and the recipient agrees to the terms of 
this License. You may not reverse engineer, decompile, or disassemble the SOFTWARE, except 
to the extent the foregoing restriction is expressly prohibited by applicable law.

LIMITED WARRANTY

LIMITED WARRANTY. Capitalware Inc. warrants that the SOFTWARE will perform 
substantially in accordance with the accompanying printed material (if any) and on-line 
documentation for a period of 365 days from the date of receipt.

CUSTOMER REMEDIES. Capitalware Inc. entire liability and your exclusive remedy shall be, 
at Capitalware Inc. option, either (a) return of the price paid or (b) repair or replacement of the 
SOFTWARE that does not meet this Limited Warranty and that is returned to Capitalware Inc. 
with a copy of your receipt. This Limited Warranty is void if failure of the SOFTWARE has 
resulted from accident, abuse, or misapplication. Any replacement SOFTWARE will be 

MQAUSX Programming Guide                                                                                                        Page 44



warranted for the remainder of the original warranty period or thirty (30) days, whichever is 
longer.

NO OTHER WARRANTIES. To the maximum extent permitted by applicable law, Capitalware 
Inc. disclaims all other warranties, either express or implied, including but not limited to implied 
warranties of merchantability and fitness for a particular purpose, with respect to the 
SOFTWARE and any accompanying written materials.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. To the maximum extent permitted by 
applicable law, in no event shall Capitalware Inc. be liable for any damages whatsoever 
(including, without limitation, damages for loss of business profits, business interruption, loss of 
business information, or other pecuniary loss) arising out of the use or inability to use the 
SOFTWARE, even if Capitalware Inc. has been advised of the possibility of such damages.

MQAUSX Programming Guide                                                                                                        Page 45



10 Appendix E – Notices

Trademarks:

AIX, IBM, MQSeries, OS/2 Warp, OS/400, IBM i, MVS, OS/390, WebSphere, IBM MQ and z/
OS are trademarks of International Business Machines Corporation.

HP-UX is a trademark of Hewlett-Packard Company.

Intel is a registered trademark of Intel Corporation.

Java, J2SE, J2EE, Sun and Solaris are trademarks of Sun Microsystems Inc.

Linux is a trademark of Linus Torvalds.

Mac OS X is a trademark of Apple Computer Inc.

Microsoft, Visual Basic, Windows, Windows NT, and the Windows logo are trademarks of 
Microsoft Corporation.

UNIX is a registered trademark of the Open Group.

WebLogic is a trademark of BEA Systems Inc.

MQAUSX Programming Guide                                                                                                        Page 46


	1 Introduction
	1.1 Overview
	1.1.1 Client-Side Security Exit
	1.1.2 Server-Side Security Exit

	1.2 Context Diagram (Logical View)
	1.3 Security Message Flow (Logical View)

	2 Procedural Languages
	2.1 CWMQCONN - Wrapper for MQCONN
	2.1.1 Syntax
	2.1.2 Parameters
	UserId (char 32) - input
	Password (char 32) - input
	QMName (char 48) - input
	QM Password (char 32) - input
	HConn (MQHCONN) - output
	CompCode (MQLONG) - output
	Reason (MQLONG) - output

	2.1.3 Language Invocations
	2.1.3.1 C Language
	2.1.3.2 Visual Basic Language


	2.2 MQCONNX
	2.2.1 Syntax
	2.2.2 Parameters
	QMName (char 48) - input
	ConnectOptions (MQHCONN) – input / output
	HConn (MQHCONN) - output
	CompCode (MQLONG) - output
	Reason (MQLONG) - output

	2.2.3 Language Invocations
	2.2.3.1 C Language
	2.2.3.2 Visual Basic Language


	2.3 CWMQCONNX - Wrapper for MQCONNX
	2.3.1 Syntax
	2.3.2 Parameters
	UserId (char 32) - input
	Password (char 32) - input
	QMName (char 48) - input
	QMPassword (char 32) - input
	HConn (MQHCONN) - output
	CompCode (MQLONG) - output
	Reason (MQLONG) - output

	2.3.3 Language Invocations
	2.3.3.1 C Language
	2.3.3.2 Visual Basic Language


	2.4 MQCONNX using MQCSP
	2.4.1 Syntax
	2.4.2 Parameters
	QMName (char 48) - input
	ConnectOptions (MQHCONN) – input / output
	HConn (MQHCONN) - output
	CompCode (MQLONG) - output
	Reason (MQLONG) - output

	2.4.3 Language Invocations
	2.4.3.1 C Language
	2.4.3.2 Visual Basic Language



	3 C++ Language
	3.1 MQAUSXClient Class
	3.1.1 Syntax
	3.1.2 Parameters
	UserId (char 32) - input
	Password (char 32) - input
	QMName (char 48) - input
	QMPassword (char 32) - input

	3.1.3 Language Invocations
	3.1.3.1 C++ Language


	3.2 ImqQueueManager and ImqChannel (MQCONNX)
	3.2.1 Syntax
	3.2.2 Parameters
	QMName (char 48) - input
	ChannelName (char 20) – input
	ConnName (char 264) - input
	ExitName (char 128) – input
	SecurityData (char 32) – input

	3.2.3 Language Invocations
	3.2.3.1 C++ Language


	3.3 ImqQueueManager and ImqChannel (MQCONNX)
	3.3.1 Syntax
	3.3.2 Parameters
	QMName (char 48) - input
	ChannelName (char 20) – input
	ConnName (char 264) - input
	ExitName (char 128) – input
	UserId (char 12***) - input
	Password (char 12***) - input

	3.3.3 Language Invocations
	3.3.3.1 C++ Language


	3.4 ImqQueueManager and ImqChannel with MQCSP (MQCONNX)
	3.4.1 Syntax
	3.4.2 Parameters
	QMName (char 48) - input
	ChannelName (char 20) – input
	ConnName (char 264) - input
	UserId (char 32) - input
	Password (char 32) - input

	3.4.3 Language Invocations
	3.4.3.1 C++ Language



	4 Java Language
	4.1 IBM MQ base Java
	4.1.1 Syntax
	4.1.2 Parameters
	4.1.2.1 Filename (String) – input
	4.1.2.2 UserId (String) - input
	4.1.2.3 Password (String) - input
	4.1.2.4 qmPassword (String) - input

	4.1.3 Exceptions
	4.1.4 Language Invocations
	4.1.4.1 Java Language


	4.2 IBM MQ base JMS
	4.2.1 Syntax
	4.2.2 Parameters
	4.2.2.1 UserId (String) - input
	4.2.2.2 Password (String) - input

	4.2.3 Exceptions
	4.2.4 Language Invocations
	4.2.4.1 Java/JMS Language



	5 .NET C-Sharp Language
	5.1 Managed .NET Environment
	5.1.1 Syntax
	5.1.2 Parameters
	5.1.3 Exceptions
	5.1.4 Language Invocations
	5.1.4.1 C-Sharp Language



	6 Appendix A – Sample Client Channel Table
	6.1 Windows
	6.2 Unix and Linux for IBM MQ 32-bit
	6.3 Unix and Linux for IBM MQ 64-bit
	6.4 Java Applications

	7 Appendix B – Sample MQJNDI
	7.1 JMS Queue Connection Factory (QCF) Sample:
	7.2 JMS Queue Sample:

	8 Appendix C – MQAUSX Language Files
	8.1 MQAUSX C Sample Files
	8.1.1 List of C sample files

	8.2 MQAUSX C++ Sample Files
	8.2.1 List of C++ sample files

	8.3 MQAUSX base Java & JMS Sample Files
	8.3.1 List of Java sample files
	8.3.2 List of Java/JMS sample files

	8.4 .NET C-Sharp Sample Files
	8.4.1 List of .NET C-Sharp sample files

	8.5 MQAUSX Visual Basic Sample Files
	8.5.1 List of Visual Basic sample files


	9 Appendix D – License Agreement
	10 Appendix E – Notices

