Mercator-

Design Guide

Release 2.0

Mercator ' /nline Library

JS' TSI International Software Ltd.

TSI Software Web Site

www.tsisoft.com

Corporate Headquarters
45 Danbury Road

Wilton, CT 06897-0840
Voice: 203.761.8600

Fax: 203.762.9677

Customer Service Centers
US/Canada 800.215.9633
847.444.0740

UK +44 (0) 171 393 8000
Australia +61 (0) 3 9820 2077
Singapore +65 225 0700

Hong Kong +852 2786 9991

Sales and Support

Bannockburn Lake Office Plaza
2345 Waukegan Road, Suite E100
Bannockburn, IL 60015

Voice: 847.317.9000

Fax: 847.317.9019

275 Madison Avenue, 24" Floor
New York, NY 10016
Voice: 212.683.0050
Fax: 212.683.0111

200 East State Street, Suite 202
Media, PA 19063

Voice: 610.892.7100

Fax: 610.892.7105

492 St Kilda Road
Melbourne, Victoria 3004
Australia

Voice: +61 (0) 3 9593 9399
Fax: +61 (0) 3 9593 9310

Copyright

100 Walker Street

Level 12

North Sydney, NSW2060
Australia

Voice: +61 (0) 3 9593 9399
Fax: +61 (0) 39593 9310

Coveham House

Downside Bridge Road
Cobham

Surrey, England KT11 3EP
Voice: +44 (0) 193 257 6800
Fax: +44 (0) 193 257 6899

62 Queen Street

London, England EC4R 1AF
Voice: +44 (0) 171 314 9600
Fax: +44 (0) 171 314 9601

114 Rochester Row

London, England SW1P 1JQ
Voice: +44 (0) 171 233 7144
Fax: +44 (0) 171 233 6931

33, rue Galilee

75116 Paris, France
Voice: +33 144 435288
Fax: +33144435299

Willy Brandt Platz 6
68161 Mannheim
Germany

Voice: +49 621 1594 164
Fax: +49 621 1594 200

Graadt van Roggenweg 328
P.O. Box 19127, 3531 AH
Utrecht, The Netherlands
Voice: +31 (0) 30 298 2269
Fax: +31(0) 30 298 2178

12-04 Keck Seng Tower
133 Cecil Street
Singapore 06535

Voice: +65 220 1126
Fax: +65 220 6809

Research & Development
Peninsula Plaza, Suite 250
2424 North Federal Highway
Boca Raton, FL 33431
Voice: 561.394.3400

Fax: 561.394.3470

This document is covered by the terms and conditions of the license agreement and/or the non-disclosure agreement, and may not
be reproduced according to the terms of that agreement, or without the written consent of TSI International Software Ltd.

Trademarks

Because of the nature of the material, numerous hardware and software products are mentioned by their trade names in this
publication. TSI, the TSI logo, and Mercator are registered trademarks of TSI International Software, Ltd. All other products and
company names mentioned are the property of their respective owners.

Publication Number 79507
© Jul 1999 by TSI International Software Ltd.
All rights reserved. Printed in the United States.

Design Guide
1

http:/www.tsisoft.com

Contents

USING the DESION GUITE .. ooiiiiiieeie et e e e e e e e e et e e e e et eeeaaaaeeeeeens 8
Other Mercator DOCUMENTATIONeeiiiiiiae ettt e ettt e e e e e bbbt e e e e e e e s e bbb et e e e e e e e s sansbebeeee s s nnbebeeeaaaeeeaannrbeneeas 8
(8L o Y =T o= 1 (o) (PR PPRPPRT 8
MEICALOr EXAMIPIESttt e e oo ook b b ettt e e e e e skt e be e et e e e e e s an b b beeeee e e nbebeeeeaaeeesannbnbaeeaaaeaean 10
Other EXamPIES IN ThIS GUITE.....ciii ittt ettt ettt e e e e oottt e e e e e e e e s e a bbb e e e e e e e e e aabnbbeeeeaeaesaannnbeneeeaeaeaannnne 10
Chapter 1 — Mercator TULOTIAlu.e e e e e e e e e e e e e e e e eeees 11
T g F= L e TU AT = o (o TN B o TP UUOUPPPTRPTN: 11
HOW 0 DO It 11
Files USed iN ThiS CRAPIEE ...ttt e e oottt e e e e e s o et bbb e e e e e e nbbbeeeeaae e e sannbbbeeeeaaaaan 11
(01 i To T T Y LT I (=T U U TP UUUPPPRUPTN: 12
ThinKiNG @bOUL the INPUL ...ttt e oottt e e e e s e st bbb e e et e e e e e sabbbbeeeeeaesaannnbaeeeeaaeeaannnnes 12
ThIiNKIiNG @DOUL the OULPUL ...ttt e e oo ettt et e e e e e s e aa bt be et e e e e e e sanseeeeeeaeaaaannbeaeeaaaeeaannnnes 13
L LS T o R € L= Y/ 0T TN = 110 SO 13
LT g= =i a0 [T o101 o RN 1Y/ 0T PSRRI 17
(0T = =10 L (=0 0 T 1Y/ 01T PSRRI 21

L@ 1o - a4 oo TN 187/ 1= S 22

Using the TYPE Tre€ INNEIILANCEuviiiiii i e e e e e et e e e e e e s e arnt e e e e e e anrnrneeaeeeenan 23

Create the Remaining NamMe SUDLYPEScooiiiiiiiiiiiie et e e aeeeeeas 27

Create the Remaining Field SUDLYPES......coo et ee s 28
(D121l T aTe J@XeTaqY o o] 1T o] £ PP PTPPPPRTP 30
COMPONENTES OF CONTACE ... ettt et e e e et b ettt e e e e e s ababa et eaae e e s e s bbb eeeeaaaeesanseeeaaeaesaannbbaneeaaeessannnnes 30
COMPONENTS OF LADEN.....cci et e oottt e e e e e o e bbbttt e e e e e e e abbeeeeaaeeeaaannnbeeeeaaeaesannnnes 35
Defining the CoMPONENTS OF LADEIcooi it e e e e e e s s e e e e e e e e s anbeaeeeaaae e s 36
D=y T gL L (=T oI d 0] o<1 1TSS 37
D= T gL] (o 1N oI (0] o 1= (= SRR 37
(o] o= 1 T=TS 0 @0 | = Lo (S 38
(o] o= U T=TS 0 I o1 OSSR 40
F N = 1)Y= L= TN 1Y/ 0T T I (YT PSRRI 42

Lo TV o P L o (o] = PP 43
SAVE the TYPE TTEE AQAINeeeeeeiiiie ettt e ettt e e oo et bttt e e e e e e e o ab e teeeeaaeaesan s bbb e e e eaae e e s nnbeeeaaeaesaannnbeneeaaeeesannnne 43
(01 == Ui To J= 1Yo o I U OURUPPPTRPTN: 44
Y = T oI =T o L3P R PP 44
0L g0 R L=\ = T o I o 1 (o] TP UTP TR 45
SAVE thE SOUICE FlE ..ttt e oo oot ettt e e e e e o st bttt e e e e e e e shbbe e e e e aeeesaannnbaeeeaaeeeaannnnes 45
RENAME e IV ettt e e e oo oot e bttt e e e e e o e R b ettt et e e e e e o aan b e beeee e e e nbbbe e e e e e e e e sannbbbaeeaaaeaean 47
(O = = LT, o I =T o [PPSR 48
T C= Yo o TN][O PSE 55
Mapping to the COMPANY FIEI.........eeiii e e e e e e e e et e e e ee e e s s ssebeeeeeeeesannantnreeaeenean 56
1Y/ F=] o1 To TR (o IS == A = (o OSSR 57
Y/ F=T o] o] o TR (o I @41 472 = L= T I =1 o SRS 57
Mapping t0 FUIl NAME FIEIA...... ... ettt e e e e e s bbb e e e e e e s nb b be e e e e e e e e sanbebeeeaaaeaean 59

FUNCtions Used iN MaP RUIEttt e e e e e st e e e e e e e s snbeeeeaaeeesannees 61
SAVE thE SOUICE FlE ..ttt oo oottt et e e e e e o st bttt et e e e e e ehbbeeeeaaeeesaannnbeeeeaaaeeaannnnes 65
01 (o It L= Y T o PR 65
=T Y- T o PP TP PPRTP 66
VIBW RESUILS ...ttt ettt oottt e e e oo 4o b bbbttt e e e e e e o a bbb be et e e e e e e aanbbeeeee s e aanbbebeeeeaaesaannnbeeeeaaaeesannnnes 67
(O g =T o] (=T ap el |V F=T o] o1 g To I =T ot o o KSR 69

Design Guide
3

Contents

AT T LA o TU AT A= g1 B (o 1 Lo PR 69
[[T (oI B o I | OO PP UP PP PPPPPPRPPPN 69
Files USed iN ThIS CRAPIEE ...ttt e oottt et e e e e e e e a b bbbt e e e e e sbbbeeeeeaeessannbbbaeeeaaaaean 69
(D=1 W B LTS Yol]] o] o 1S PP ROTPU PP 70
INPUE DALA ...ttt e aaaaaaaaas 70
1001 (o] gt Ll D=1 2= W @] o] [T o £ J PR OUUUPPPRUPTPN: 70
(O 1110101 - | = T 70
L0 Lo T Y o LT = 11 (o] TR PUTP TP 71
Identifying PropertieS Of FIlE TYPES ..uuiiiii it e et r et e e e e e e s e e e e e e e s s et aeeeaeeasassabeeeeeaeeeannsntneeeeeeanan 72
=TT 0] o 1T 11 OSSR 72
Identifying CompPONENtS Of FIlE TYPES coiiiiiiiiiiiiiii e et e et e e e e e e e e e e e e s e e et e e e e e e s s ssntreeeeeeesanntnanreeeaenean 73
D= 11T o] g] o 0] 1= | =SOSR 73
L LS T o 1, = o TN o 11 o] SO 76
O (=T 1 (=R O 1 {0 PRI 76
a1 E Y oV o B U] [PP UE TP 78
Chapter 3 - Using the UNIQUE FUNCTIONuuuiiiiii e 85
AT T LA o TU AT A= Va1 B (o 1 Lo SRR 85
[[T (oI B o I | OO PP PP PPPPPPRPPPN 85
Files Used in thiS EXAMPIEcooiiiiiiiie ettt s et e e e e e e s st e e e e e e e s san b et eeeee e nntnbeeeeeeeeesnnnntnneeaeenean 86
L LS T o € L= = T o TN = 1 o] SO 86
Chapter 4 - Using the EXTRACT FUNCLIONciiiiii e 91
Case 1 — Extracting Contacts for @ SPECIfIC STALE......uiiiiii i e e e e e e e e e e e snnnenes 91
[[T (oI B o 1 | OO UP PP PPPPPPRPPP 91
(SIS W Y=Y I O Y= PRSP 91
L LS T o € L= Y= T TN = 11 o] SO 92
a1 C= g L= Y= T T U= OSSR 93
Case 2 — Extracting Contacts that are Preferr@..........cii i e e e s s e e e e e e e snnnnnes 95
HOW 10 DO It 96
FIIES USEA IN CASE 2. eeeeiiiiie ettt ettt et oo oottt et e e 44 ookt b ee et e a2 e 2o ook e b be e e e e e e e e o s bebeee e e e nbbbeeeeaaeeesannbbbneeeaaeaasn 96
L0 LS ol L= T Y/ o T3 =T 1 o] T T PETP TR 97
Create the LOOKUP DALA...........uuiiiiiiiiiiiiiie ettt ettt e e e e e ot e ettt e e e e e e e st b beeeeaaeeesabeeeeaaeaesaannbbeneeaaaaeaannnnes 97
O LS o R L=\ = T o I o 1 (o] TP UTP TR 98
Chapter 5 - Testing the EXiStenCe Of Datacuuviiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee e 100
R AT T LA o TU AT A= Vg B (o 1 Lo TSRS 100
HOW 10 DO It .. 100
Files Used in thiS EXAMPIE ...ttt e e ettt e e e e e s s bbbt e e e e e s eabb b e e e e e e e e e sannbnbeeeaaaeaean 100
(OIS o R L=V F= T o I o [o TS PPPRTT PP 100
Chapter 6- Using Cross-Referenced Data.........cccoooeivviiieiiiiiiiieeeeeceeeeicese e 103
When to Use LOOKUP, SEARCHDOWN, and SEARCHUPcocciiiiiiiiiiieiiiee e 103
Case 1 - Using LOOKUP for Unordered Cross-Reference Data...........cceeeeeiieciiiiiiieeeisiciiiieene e e e e ssinnieeeseee e e 103

HOW 10 DO It 103

FIlES USEA IN CASE L....eieeiiiiie ittt ettt oottt et e e e e e o ea kbbbt et eae e e e e s s bbb beeeea e e e e s nnbabee e e e snnbbbeeaaaaeaean 104

USING the TYPE EQITOF ... ittt ettt e et e e e e e e e e e bbbt e e e e e e e e s e aabbbe e e e e e e e snnbnbeeeaeas 104

USING the LOOKUP FUNCHION ...ttt ettt e e e e e s s s et e e e e e e e e annb b e e e e e e e snnbebeeeaeas 106

Using the FUNCLONal Map WIZAIG.coooi ettt e et e e e e e enbaaeeeaeas 108
Case 2 - Using the SEARCHDOW N FUNCHION. ...ttt e ettt e e e e s s s sbbeseeeaa e s s e snnbeeaaesesanneees 110

(SIS Y=o W W O Y= SRR PRTI 110

L0 LSl R ¢ L= Y= T o TN o 11 o] S 111

Design Guide
4

Contents

Case 3 - Using the SEARCHUP FUNCHONcuiiiiiieie st s e st e s e e s s s st e s e e e e s s santn e e e aeeesssnneeeaeeeaeannnnnns 112
(SIS Y=o W W O Y= SRR SRTTP 112
0L T lo R L= = T o I o 1 (o] TP TP 113
Case 4 - USING the CHOOSE FUNCHON ...c.ccoiiiiiiiiiiieie ettt ettt e e e e e e s e aab b e et e e e e e e s absaeeeaaaeaaaannrees 114
LV aF= L o TU AT A= 0 B (o TN B o TR PP TR 114
HOW 10 DO It 115
FIlES USEA IN CASE 4.ttt e ettt et e e o4 ook kb bttt et e e e e e e e n b bttt e e e e e e e e s nnbnbee e e e snnbbbeeaaaaeaan 115
(0L g lo R L= T Y/ o TSI =T 1 o] TS PRSTTT PP 116
L0 LTl R € L= Y= T T = 1 o PSP 116
Using the FUNCtional Map WIZAId............ceoiiiiiiiiieee e e e e e s e ee e e e e e e s st e e e e e ennrnrneeeeas 117
Chapter 7 - Using Control-Break Logic to Define Data...........ccccceeeeeeiviiiiiieviiiicicceeee 120
Case 1 - Breaking Data by CoUNtING ODJECLSuuiiiiiaiiiiiiiiie et e e e e e e e s ae e e e e e e e e e aaneeees 120
LV aF= L o TU AT 2= g B (o TN B o PSR TTUPUPP TR 120
HOW 10 DO It 121
FIlES USEA IN CASE L....eieiiiiiie ittt ettt ettt et e e a4 ook kb bttt e e e e e e e e s s bbb be e e e e e e e e s nnbebee e e e annbnbeeaaaaeanan 121
L LT T R € L= TN Y/ 0T = 1o S 121
L0 LT o R L= TN Y= T T = 1 o S 124
Case 2 - Breaking Data by a Change in @ Data ValUEeeuiiiiiiiiiiiiiieic e e e e e e ee e s e 126
A Y T LA o TU AT A= Vg1 B (o 1 Lo T PP UUPROTRPIN 126
[[T (oI B o I | TP PP PP PPOPPTPPRPP 127
FIlES USEO IN CASE 2....eeeiiiiiie ettt ettt e oottt et e e e e e ek et bttt et e e e e e e e ab bt beeeeae e e e s nnbebee e e e annbebeeaaaaeanan 127
USING The TYPE EQITOF ...ttt oo ettt e e e e e e o bbb et e e e e e e s e aan b be et e e e e e snnbbbeeeeaaeseaanreeneeas 127
USING the IMAP EQITOT ...ttt et oo oottt et e e e e e ot bttt e e e e e e e e nnbaeea e e e e sannbbbeeeeaaeaeannnnneeeeas 131
Chapter 8 - Using Partitioning to Simplify Map RUIESccoooviiiiiiiiiiiiiiee e 132
A Y g T= LA o TU YA = Vg1 B (o 1 Lo TP RP TR UUPROTPPI 132
[[T (oI B o I | TP PP PPOPPTPPRPPP 132
Files Used in thisS EXAMPIE ...t s et e e e e s st e e e e e e s s st e e e e e e ennsnteneeeeeeeanns 132
USING The TYPE EQITON ...ttt e oo ettt e e e oo e s e bbb te e e e e e e s e aanbbe et e e e e e snnbbbeeeeaaeaeannrneeeeas 133
(OIS g lo R L=V = T o I o [o ST PRETTT PR 136
OrderSBYDEPAITMENTttt e oottt e e e e e e s h bbb e e e e e e e e e s e abbbe e e e e e e e e e anbaeae e e e e e nbareeeaaas 136
F & Y18 R U] oL] o F TP PPPTT 139
Chapter 9 - Mapping OptioNal INPULSceuveiiiiii e e 143
A T T LA o TU R = Vg1 B (o 1 Lo TP RP PO UUPROTRPI 143
HOW 10 DO [t 144
Files Used in thiS EXAMPIE ...ttt e oottt e e e e e s e bbbt e e e e e s eabb b e e e e e e e e e s nbabeeeaaaaaan 144
USING The TYPE EQITON ...ttt e oo ettt et e e e e e s s b bbbt e e e e e e s e aanbbeeea e e e e sannbbaeeeaaaeseannnbeneeeas 144
USING the IMAP EQITOF ...ttt e oo ettt et e e e e e o ab bttt et e e e s e e nnbeeea e e e e snnbbaneeaaaeseannnbseeeeas 146
Chapter 10 - Mapping Multiple Files to One File ..o 150
WHEt YOU WEANE E0 DO ..ciiiiiiieiiiiiiee ettt ettt sttt e e st e e e sttt e e sttt e e e sabb e e e sabbe e e e sbbeeesnbeeeessnbeeeeeas 150
HOW 10 DO [t 151
Case 1 — Header and Detail Files in the SAme OFAer...........uuiiiiiiiiiiiie et 152
[TSRO LY=o I T O T = PP PPRPTN 153
USING The TYPE EQITON ...ttt e e oo e e bttt e e e oo e o bbb et e e e e e e s e aanbbeeea e e e e sannbbbneeaaaeseannbeeeeeas 154
(OIS g lo R L= Y= T o I o [o U PPSTTT PP 155
Case 2 — The Detail File is NOt SOred DY POo ettt a e eaaneees 157
FIlIES USEA IN CASE 2....eeteeiiiiee ettt ettt oo oottt et e e o4 e oo bttt e et e e a4 e e aaa bbb et e e e e e e s e aa R b beseeesanbbbeeeeaaeeesannbnbaeeaaaeaaan 158
L LT o R € L= TN Y/ 0T = 1o S 159
L0 LS T T R € L= Y= T T = 1o S 159

Design Guide
5

Contents

Case 3 — 0rganize the POS DY CUSIOMETcoiiiiieiieee ettt e e e s e st e e e e e s s s st e e e e e e s snnnaeeeeeeeaeannnnnes 161
[(IS Y=o W W O Y PP TPRR 162
USING The TYPE EQITOF ...ttt ettt e e oo ettt et e e e e e e e bbbttt e e e e e s e aanbbe et e e e e e snnbbbeeeaaaeseannbsseeeas 162
(0L g lo R L=V F= T o I o [o P PPTTTT PP 163
Chapter 11 - Mapping Multiple Files to Multiple FileS..........ccccuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiies 168
A T T LA o TU R = Vg1 B (o 1 Lo PP UUPROTRPIN 168
[[0 (oI B o I L TP TP PP P OPPTPPRPPP 168
Files USed iN thiS EXAMPIE ...coiiiiiiie ettt st e e e st e e e ss e e e et b e e e e bbe e e e s nnbeeeeenbeas 168
USING the TYPE EQITOT ...eeiiiiiieieei ittt e ettt e e e sh bt e e e shb et e e s sabe e e e e sbeeeeesabeeeesanbbeeeesnbaeeeeanes 169
(0L g lo R L=V = T oI o [o U PRPTTT PP 170
Chapter 12 - Arithmetic Functions and OpPeratorsSceeeeiieeeeeieeeiiiieee e e e e e e 177
ATV T LA o TU AT = Vg1 B (o 1 Lo TP RP TR UUPROTRPIS 177
HOW 10 DO [t 177
Files USed iN thiS EXAMPIE ...ccoiiiiiiii ittt ettt r ittt e e s s ab et e e e snbe e e e bt e e e e abbe e e e e nnbeeeeenneas 177
USING the TYPE EQITON ...eeiiiiiieiie ittt e e sttt e e e sa bt e e e shb et e e e aabe e e e e sbeeeeesabeeeessnbbeeeesnbaeeeesnes 178
WS TaTo I g L= Y = T o o 1) o PPN 181
Chapter 13 - Ignoring INValid Data...........ooeuiiiuiiiiiiieeeeei e 184
A Y g E= LA o TU R = Vg1 B (o 1 Lo T PP PUPROTRPI 184
[[0V (o I B o I | TP PP PP P OPPTPPRPPP 184
Files Used in thiS EXAMPIEcooieeiiiieiie ettt e e e s s e e e e s e st e e e e e e s et et e e e e e e s ennsteneeeeeessnnnnnreneeaeennan 184
L LS T o R € L= TN Y/ 0T = 1o S SP 184
L LS T T R € L= Y= T T = 1 o PSP 186
Chapter 14 — Mapping INvalid Dataccuiiiiiiiiiii e e 189
What You Want to Do—Mapping Invalid Data to @ Filecccuveiieieeiiiiccc e 189
[[0 (oI B o I | TP P PP P OPPTPPEPPP 189
Files Used in thiS EXAMPIEcooieiiiiieiie ettt e e s e e e e s e st e e e e e e s e nte e e e e e e s ensnteneeeeeessnnnnrnneeaeennan 189
L LS T o R 4 L= TN Y/ 0T = 1o S 189
L0 LS T T R € L= Y= T T = 1o S SP 190
Chapter 15 —Using Logical FUNCLIONSuiiiiiii e 193
Case 1 — USIiNG the OR FUNCLION ...ttt e ettt e e e e e s e ab bt e et e e e e e e s e nbbbeeeee e saanbnbeneeaaeseaannne 193
A T T LA o TU R AY = Vg1 B (o 1 Lo TSRS PUPROPRPI 193
[[T (oI B o I | ST PP PP P OPPTPPRPPP 193
(SIS Y=o I W O Y= SRR PP 193
L LS T o R 4 L= TN Y/ 0T = 1o S 194
L0 LT T R L= Y= T T = 1 o P 196
Case 2 — USING the ALL FUNCHON ...t e s e e e e e s e e e e e e e e s et e e e e e e e e sanntsaeeeeeesennssteneeeaeseannnnnes 198
LAY A= A o UYL= o1 B (TN 5 o TN 198
[(01 TV (o I o | PRSP PPPN 199
FIleS USEA IN CASE 2. ..o, 199
USING The TYPE EQITOFttt e oo ekttt e e e e oo s o hbe et e e e e e e s e aan b be et e e e e e snnbbbeeeeaaeseannnreneeeas 199
(0L g lo R g L=\ = T oI o [o] PSPPI 201
Case 3 —UsiNg the EITHER FUNCLONcoiiiiiiiiiiies e e e e s s e e e e e e s st eae e e e e e e e s snnta e e e aeesennnnbeneeaeeseannnnne 202
A Y T LA o TU YA =T B (o 1 Lo TP PP TR UUPRORPPIN 202
[[0V (o I B o I | TP PP PP PPOPPTPPRPP 202
(oIS WY =To W W O T SRR PRPP 203
L LS T o R € L= TN Y/ 0T = 1o S 203
L0 LS Tl R L= Y= T T = 1 o PSP 203

Design Guide
6

Contents

Case 4 — UsSIiNG NESLEA IF FUNCHONSuuiiiiiiiiiiiiiie e e e et e e e e st e e e e s s s st e et e e e s e anastaeeeeeeeesnansnteneeeaeeeanannnes 205

WHEt YOU WEANE E0 DO ..eiiiiiieiiiiiiee ettt ettt ettt et sttt e e sttt e e e s abb et e e sttt e e e sabbe e e e s bbeeesnbaeeessnbeeeeeas 205

[(01 TLV R (o I o | RSP PPPN 205

FIleS USed IN CaSE 4., 206
(0L g lo R LT Y/ o TSI o 1 (o] U PRSTTP PP 206
(0L g lo R L=\ = T oI o [o] PSP RETTP PP 206
Chapter 16 — Incrementing OUTPUL DATAuvvviiiiiiiiiiiiiiiiiiiiiiiiiieeieieeee e 209

A Y g T= LA o TU YA = Vg1 B (o 1 Lo TP RP TR UUPROTPPI 209
Case 1 — UsiNg the INDEX FUNCHIONuuiiieiiiiiiiieie e e e e s st ee e e e e e s st e e e e e e s st ate e e e e e e e s snntsaeeeeeeesnnsnteneeeaeseannnnnes 209

[[0 1TV (o I o | SRRSO 209

FIles UsSed IN CaSe L., 209
USING The TYPE EQITON ...ttt e e oo ettt et e e oo s s bbb et e e e e e e s e aanbbeeea e e e e sannbbbeeeaaaeaeannnbsneeeas 210
(OIS g lo R L=V = T o I o [o U PPTTTT PP 210
Case 2 — USIiNG the COUNT FUNCHIONiiiiiiiiiiiietee ettt e e e e e e st e e e e e e e e s s e aabbe et e e e e e s abbsaeeeaaaeaaannnrees 212
FIleS USEA IN CASE 2. ..o 212
L LT T R L= Y= T T = 1 o PSP 212
Case 3 — USING the INGEX [LA ST 1ieeiiiiitiiiieie e e e e ettt ir e e e e e s et e e e e e e s ettt e e aeeesssnteaeeeeeeesssansasaeeeeeesaansnrnneeeaeseannnnnns 213
[(IS Y=o W W O T PP TP 213
L0 LS Tl R L= Y= T T = 1o S 213
Chapter 17 — Retrieving Information from Other Applicationsccccooeeeeviiiiieeiiiinnn, 215
USING the EXIT FUNCLIONeeiiiii ettt e ettt e e e e e s s bbbttt e e e e e s e aanbbe et ae e e e sannbbaeeeaaaeaeannnrseeeeas 215
Files Used in thiS EXAMPIEcooiiiiiiiiiie e e et e e et e e e s e et e e e e e e s e sta e e eeeaeeasnnteaeeeeeessnnrnraneeaaenean 215
(8 oo (=TS 7= Vg Lo 1 o 4 U= Y/ - o TS 216
Using the DDEQUERY FUNCHIONuuuiiiiiiiiiiictiieie e e e e sttt e e e e s s s st e e e e e e s s e st ae e e e e e s s asntaeeeaeeeesansnaneeeeeeanannenennes 217
Files Used in thiS EXAMPIEcooieiiiiieiie e e ettt s s s e e e e s e s e e e e e e s st e e e eeesennnbeneeeeeeesnnnnnnenneaeennan 218
(8 T aTo (=TS 7= Vg T L1 o 4 U= Y/ - o TSP 218
Chapter 18 — Functions that Operate on Text Data.........cccceevieiiiiiiiiceiiii e, 221

LAY A= A o TV ALY T o1 B (TN 5 T 1N 221

[[0V (oI B o I L ST PP P PP PP OPPPPPPPPPN 221
FIlesS USEA IN thiS EXAMPIE ...ceii ittt e e e et e e e e s e et e e e e e santeteeeeeeeannsnteneeeeeeesnnnsnreneeaeennan 221
L LS T o R € L= TN Y/ 0T = 1o PSS 221
USING the Map EQITOr ...uun it e e e e e e e e et eeeeaaaaas 223
T o Yo 1= PSSOt 227

Design Guide
7

Using the Design Guide

Using the Design Guide

This Design Guide was created to help you learn Mercator through hands-on work. It includes a tutorial
for learning the basics, and a number of examples, which you can duplicate on your own. Use this guide
as a practical tool for learning Mercator.

Other Mercator Documentation
In addition, you should read the other Mercator Authoring System documentation, which includes the
following:

Getting Started

Type Editor Reference Guide

Map Editor Reference Guide

Functions and Expressions Reference Guide
Using a Command Execution Engine
Execution Commands Reference Guide
Building and Using an Application Adapter
Type Tree Maker Reference Guide

The Getting Started manual covers installation of the Mercator Authoring System, and introduces the
concepts of data objects and object-oriented mapping. The Type Editor Reference Guide contains
detailed information on using the Type Editor, and the Map Editor Reference Guide has similar detail
about the Map Editor. The Functions and Expressions Reference explains how expressions are
evaluated, and lists each Mercator function with its syntax and examples. Using a Command Execution
Engine discusses how to run a map on your system platform using a command Execution Engine. The
Execution Commands Reference Guide explains execution commands and their options. Building and
Using an Application Adapter explains how to build an application adapter and how to use it as a source
or destination for a map. The Type Tree Maker Reference Guide covers how to use the Type Tree Maker
to create a type tree. You may want to refer to one or more of these manuals as you work through the
Design Guide.

Using Mercator

There are three basic steps in using Mercator:

Design Guide
8

Using the Design Guide

1 The first thing you do is define your data to Mercator, in the Type Editor.
2 Next, in the Map Editor, you tell Mercator how to map your data.

3 Then, you use an Execution Engine for your system platform to actually map the data.

e

e &g

. . Execution
Type Editor kap Editar Engine
"Here's the "Here's how to "Now, map
definition of map my data" my data”
my data”
Design Guide

9

Using the Design Guide

Mercator Examples

Mercator comes with examples, that are installed when you run Setup. Each example includes data
file(s), type tree(s), and a map source file.

The examples are located in the “Examples” directory (folder in Windows 95), under the directory
where you installed Mercator. Within the Examples directory, is the directory “general.” Some of the
examples in the general directory are explained in this guide.

Each example is located in a directory with an appropriate name. For example, the map that uses the
EXIT function is in the Examples\general\exit directory.

Other Examples in This Guide

In addition to explaining some of the examples that come with Mercator, this guide documents other
examples. These examples show you how to use some of the Mercator functions. They also explain
common mapping methods that you may want to use.

Design Guide
10

Chapter 1 — Mercator Tutorial

Chapter 1 — Mercator Tutorial

This chapter guides you through a simple example that teaches the basics of using Mercator. Using a
data file supplied with Mercator, you follow step-by-step instructions to create your own type tree and
map. Before you begin working through this example, you should understand the basic concepts of data
objects and mapping, which are explained in the Mercator Getting Started manual.

What You Want to Do

Suppose you have a simple file of just one record. This record contains information about one of your
customers. The record includes the name of the contact person at the company, the company name, the
address, and the phone number.

Input Data:
Adans, Janes, P, ABC Co., 29 Frankford Rd, Bl ooni ngton, I L, 60525, 708, 3525555

From this file, you want to generate a mailing label for that customer.

Output Data:
Janes P Adans
ABC Co.
29 Frankford Rd
Bl oom ngton, IL 60525

How to Do It

First you need to define the contact data and the label data in a type tree. Next, define how you want to
transform the contact information into a label. To do this, create a map in the Map Editor. Then, build,
or compile, the map. Finally, run the map to generate the output data.

Files Used in This Chapter

The following table contains the input file and the files to create when working through the tutorial.

File Use
contact.txt Use as an input data file. It is located in your
mercator\examples directory (folder in Windows
XX).

address.mtt Create this type tree file.

Design Guide
11

Chapter 1 — Mercator Tutorial

mail.mms Create this map source file.

label.txt Running the completed map creates this output file.

Creating a Type Tree

Define the data in a type tree. Create two type trees—one for the input, and one for the output. Or, create
one type tree that defines both the input and output. It does not matter whether you create one or two
type trees. Mercator’s performance is not affected. One advantage of creating a single tree is that the
data objects that appear in both the input and the output are in one place. If you plan to create mailing
labels from a variety of different input sources, you might decide to create one tree for input, and a

separate tree for output.

Thinking about the Input
If you think about the input data, and describe it, you might say, “The file is made up of just one contact
record. The contact record is made up of certain fields.”

You need to consider which data objects will be defined as Items, and which ones will be defined as
Groups. Simple data objects will be Items. Complex data objects will be Groups.

Which objects are simple?

All of the fields are simple data objects. They do not have other data objects
inside of them. Therefore, each field will be defined as an Item.

Which objects are complex?

The contact record is complex—it is made up of fields. It is a Group. In this
case, contact records comprise the entire file.

If you look at the input data again, you see many data objects. Each field is a data object. The contact
record itself is a data object. You need to name each data object.

Adans, Janes, P, ABC Co., 29 Frankford Rd, Bl ooni ngton, I L, 60525, 708, 3525555

A + + A A A A A A A
First Name
Company Street City State Area code
Last Name *lf
hﬂg::: Zip code Phone
Contact
Design Guide

12

Chapter 1 — Mercator Tutorial

Notice that a comma is used to separate the fields, and although you cannot see it here, there is a
carriage return/linefeed (CR/LF) at the end of the record. The comma and CR/LF are syntactical objects.
They are used to separate one field from another, and tell when a record ends.

Thinking about the Output

If you think about the output data, and describe it, you might say, “The file is made up of just one
mailing label. The label is made up of four fields, each on a separate line.”

What objects are simple?

Each field in the label is considered a simple text object. Simple objects are
defined as Items.

Even the last line in the address—city, state, and zip code—is considered one
text Item.

What objects are complex?

The label is made up of multiple fields. Therefore, it is considered complex.
Complex objects are Groups. Therefore, the label is a Group.

Look at the output data, and name the data objects.

Full Name » Janes P Adans
Company » ABC Co.
. . 29 Frankford Rd
reet > .
» Bl oom ngton, |IL 60525
CityStateZip
Label

Using the Type Editor

It's time to do some hands-on work. Start the Mercator Type Editor:

Click Start, then point to Programs, point to the Mercator group, and click the Type Editor icon.

Design Guide
13

Chapter 1 — Mercator Tutorial

3P Command Engine
&1: Databasze Editor
<" Map Editar

@ Mercator Type Tree Maker Help
9& System Editor

Click Heore ——| & Tvpe Editor
B Type Tree Maker

The first thing you need to do is to create a new type tree. The type tree’s purpose is to describe the data
to be used as input, and the data you want to create—the output. You are going to describe both the
input and output data in the same type tree.

To Create a New Type Tree

1 When you open up the Type Editor, as shown above, you will be given the option of
opening up an existing tree or creating a new one.

The Startup dialog is displayed.

Startup EH |

B " Open an existing type tee fils

:Tﬁ ¥ Create a new type tree fils

Bioat type name; I

@ i~ Open a recently used wpe tree file

CATEMPVORDERACK MTT

[T Do not show this at startup

Cancel |

Now, enter the name of the root type. Name the root type Data.

2 In the Root type name box, enter Data.

Design Guide
14

Chapter 1 — Mercator Tutorial

3 Click OK.

Now, a type tree window is displayed. The root type is Data. The root type has a red icon. The red icon
means it is a Category.

E TypeTreel [_To] =]
i ﬁ

The next thing you should do is save the type tree file.

To Save the Type Tree

1 From the File menu, select Save.

=)

The Save As dialog is displayed.

Or, click the File Save tool.

Save the type tree file in the Examples directory (folder in Windows 95 or 98), because this is
where the data file is located. This makes things easier later on.

2 Double-click the Examples directory.

Design Guide
15

Chapter 1 — Mercator Tutorial

Save Az

Save in: Iamercatnrlﬂ j gl IEE_E i
I:IE:-:ampIes

1 Part
1 Trees

File name: TypeTreel MTT Save I
Save as type: IT_upe Tree Files [*.mtt) j Cancel |

The contents of the Examples directory is displayed.

3 Inthe File Name field, type over TypeTreel.MMT, and enter address.
Mercator automatically adds the extension (.mtt) to the type tree file name.

4 Click OK.

Design Guide
16

Chapter 1 — Mercator Tutorial

The name of the type tree file, address.mtt, is displayed in the title bar of the type tree.

E. Address MTT [_ O]
@ ﬂ

Next, create the types.
The order in which you create types does not matter, in general. However, for this tutorial, follow along
step by step.

Creating Group Types

The Group types are Contact and Label. The Contact Group represents the input file. The Label Group
represents the output file.

So, the Group types to create are:
» Contact

e Label

To Create the Contact Type

1 From the Type menu, select Add.

Or, click the Add Type tool.

Or, press the insert key.

The New Type is displayed in your tree. The default name is NewTypel.

Design Guide
17

Chapter 1 — Mercator Tutorial

E Addresz MTT M=

2 Type over NewTypel and enter Contact.

E. Address MTT [_ O]

@ Data
o ¥_ontac

Now, specify that Contact is a Group. To do that, bring up the Properties grid for this new
type. Do this with a right-mouse click on the new type and then select Properties.

Zay

Or, click the Properties tool.

Design Guide
18

Chapter 1 — Mercator Tutorial

3 Inthe Class section, click on Category. From the drop-down list, select Group.

Froperties for Contact Data

Froperty | W alue I
"""" Description
"""" Partitioned Mo
"""" Order subtypes | Ascending
[+ Format Implicit
"""" Initiator Mane
"""" Terminator None
"""" Release Mane
"""" Where Used

4 Click OK.

Contact should now have a green icon, indicating that it is a Group type.

E. Address MTT M=l

j Data
Lo lelaele

Design Guide
19

Chapter 1 — Mercator Tutorial

To Create the Label Type

When you create a type, it is displayed beneath the type that is highlighted. Make sure Data is
highlighted when you create Label. This ensures that Label is placed underneath the root type, Data.

1 Select the type Data.

2 From the Type menu, select Add.

Or, click the Add Type tool.
Or, press the insert key.
The New Type is displayed in your tree. The default name is NewTypel.
3 Type over NewTypel and enter Label.

4 Bring up the properties grid and in the Class section, select Group.

5 Click OK.

The type Label, with a green icon, stems down from the root.

E. Address MTT M=l E
@ Data
- @ Contact

Now, create the Item types.

Design Guide
20

Chapter 1 — Mercator Tutorial

Creating Item Types

The Item types are all of the fields in Contact and Label. Some of the fields that appear in Contact are
also in Label. The fields in both are the Company and Street fields. Define these just once, and re-use
them.

Here is a list, in alphabetical order, of the Item types to create:
* AreaCode

« City

» CityStateZip

* Company

» First Name

* Full Name

» Last Name

* Middle Name

* Phone

» State

e Street

e ZipCode

Design Guide
21

Chapter 1 — Mercator Tutorial

Organizing Types

Sometimes, you may want to organize similar types in the same area of the type tree. Create a type and
put related types underneath it.

Create an Item named Field, and put all of the field types underneath it. In addition to organizing similar
types, another advantage of creating a Field Item is that all of the types created beneath it are
automatically created as Items. When you do this, there is no need to select Item from the Class section
when you create each field type.

To Create the Field Type
1 Select the root type, Data.

2 From the Type menu, select Add.

Or, click the Add Type tool.

Or, press the insert key.

The New Type is displayed in your tree. The default name is NewTypel.
3 Type over NewTypel and enter Field.

4 Inthe Class section of the Properties grid, select Item.

5 Click OK.

The Field type, with a blue icon, now stems off the root.

E Address MTT [(O]

@ Data
- @ Contact

‘@ Label

Note: All types are displayed in alphabetical order, from top to bottom.

Design Guide
22

Chapter 1 — Mercator Tutorial

Using the Type Tree Inheritance

When types have common properties, take advantage of the type tree’s Inheritance feature. When a type
tree is created, it inherits the properties from the type above it. If some types have common properties,
create a type and define the common properties for it. Then create all the types that have those
properties underneath it. That way, there is no need to define the same properties multiple times.

The following table contains the Items’ properties. These properties include Interpretation, Minimum
size, Maximum size, Justification, and Pad Character.

Item Interpretation Min Max Justification Pad
Character

AreaCode Text 3 3 Left <space>
City Text 2 <none> Left <space>
CityStateZip Text 10 <none> Left <space>
Company Text 3 <none> Right <space>
First Name Text 1 <none> Left <space>
Full Name Text 1 <none> Left <space>
Last Name Text 1 <none> Left <space>
Middle Name Text 1 <none> Left <space>
Phone Text 7 7 Left <space>
State Text 2 2 Left <space>
Street Text 2 <none> Left <space>
ZipCode Text 5 5 Left <space>

Notice that the name fields have the same properties. The common properties of the name fields are:
e Interpretation — text
* Minimum size -1
e Maximum size — none
» Justification — left

* Pad Character — space

Design Guide
23

Chapter 1 — Mercator Tutorial

Create a type called Name, and assign to it the properties that all the name types have. Then, when the
name types are created, they automatically inherit these properties. There is no need to assign them for
each one.

To Create the Name Type
1 Select the Field type.

From the Type menu, select Add.

Or, click the Add Type tool.

Or, press the insert key.
The New Type is displayed in your tree. The default name is NewTypel.
2 Type over NewTypel and enter Field.

If you pull up the Properties grid for the Field type, you will see that Item is already chosen in
the Class section. This is because a type beneath an Item must be an Item. Mercator does not
allow you to select any other class for this type.

3 Click OK.

The Name type is displayed beneath the Field type:

E Address MTT [(O]

@ Data
- @ Contact
- @ Field

& Label

Design Guide
24

Chapter 1 — Mercator Tutorial

To Define Properties of the Name Type

Now, define the properties of the Name type.

1 Select the Name type.

2 Bring up the Properties grid for the Name type.

Right-mouse click the new type and then select Properties.

Or, click the Properties tool.

Zay

Or, hold down the aLt key and press the enter key.

The Properties grid is displayed.

Froperties for Mame Field Data

Property Value I
....... Name Mame

....... Class Iterm

"""" Description

------- Partitioned Ma

"""" Order subtypes fscending

-~ Interpret as Character
= Size {content)
....... Min 1
....... Max
....... Pad Mo
- Restrictions
#-- Mational language Western
H-- Special
------- Initiator Mane
"""" Terminator Mane
"""" Release Mone
"""" Where Used

Most of the properties that were passed down from the root to Field to Name type should be
kept. You do not have to change the settings on Interpret as (text), or Pad.

The only change to make is the Minimum size.

1 Inthe Size section, enter 1 in the Min box.

2 Press the enter key.

Design Guide
25

Chapter 1 — Mercator Tutorial

Now, each type you create under the Name type inherits the Name’s properties. There are four name
data objects—First Name, Last Name, Middle Name, and Full Name. Create four types under the Name
type, and call them First, Last, Middle, and Full. You created subtypes of Name. A subtype is a type that
stems beneath a given type.

To Create the Name Subtypes
1 Select the Name type.

From the Type menu, select Add.

Or, click the Add Type tool.

Or, press the insert key.

The New Type is displayed in your tree. The default name is NewTypel.
2 Type over NewTypel and enter First.

Notice that Item is already selected in the Class section of the Properties grid.

The type First inherited the properties of the type Name. There is no need to define the properties for
First. It is already done! To look at the properties, select First and then bring up the Properties grid.

Design Guide
26

Chapter 1 — Mercator Tutorial

To Look at Properties of First
1 Select the First type.
2 Bring up the Properties grid for the First type.

Right-mouse click the new type and then select Properties.
2z,

Or, hold down the a.t key and press the enter key.

Or, click the Properties tool.

The Properties grid is displayed. Note that the properties for the First type are already
defined.

Now that you have created one of the Name subtypes, define the rest.

Create the Remaining Name Subtypes

To create the rest of the Name subtypes, follow the instructions under “To Create the Name Subtypes,”.
In step 3, enter a different type name.

Design Guide
27

Chapter 1 — Mercator Tutorial

Follow the instructions three more times—once for each remaining subtype. The remaining subtypes
are:

e Last
« Middle
 Full

Now, create the remaining Items under the Field type.

Create the Remaining Field Subtypes
Create the remaining subtypes of Field:

* AreaCode

« City

» CityStateZip

* Company
* Phone

» State

» Street

e ZipCode

To Create Other Field Subtypes

Here are instructions for creating the remaining Field subtypes. In step 3, the word typename stands
for the particular name of the type, as they are listed above. For example, the first time you follow these
instructions, enter AreaCode as the typename. The next time, enter City.

1 Select the Field type.

From the Type menu, select Add.

Or, click the Add Type tool.

Or, press the insert key.

The New Type is displayed in your tree. The default name is NewTypel.

Design Guide
28

Chapter 1 — Mercator Tutorial

2 Type over NewTypel and enter typename.

When finished creating the Field subtypes, the tree should look like this:

- @ Contact
EH- @ Field
- @ AreaCode
o i Cit'g.-'
@ CityStateZip
- @ Company
@ Mame
- @ First
@ Full
- @ Last
o @ Middle
Phone
State
Street
ZipCode
- @ Label

All Field types in the Contact and Label data are defined. The Contact and Label types are defined.
There are no other types to define.

The input and output types are now all defined in the type tree.

Design Guide
29

Chapter 1 — Mercator Tutorial

Defining Components

Now, define the components of the Group types.

A component is a data object that is part of a complex data object. For example, the data object First
Name is part of the data object Contact, so First Name is a component of Contact. The data object
CityStateZip is part of the data object Label, so CityStateZip is a component of Label.

Remember that Group types are complex—they are made up of other objects. Therefore, they have
components. In contrast, Item types are simple. They are not made up of other objects. So, Item types do
not have components.

Components of Contact

When defining components of a Group, tell Mercator what data objects make up the Group. Mercator
also needs to know the order of data objects in the data stream.

To determine the order of Contact’s components, look at the data again.

Adans, Janes, P, ABC Co., 29 Frankford Rd, Bl oom ngton,IL, 60525, 708, 3525555

A + * A A A A A A A
I I
First Name
Company Street City State Area code
Last Name —r
l\:l\‘ig:qls Zip code Phone
Contact

This diagram shows the components of Contact. Each field is a component of Contact. By reading the
diagram left to right, the order of the fields is clearly seen.

Now, make a list of the components of Contact, in their data stream order—their order in the data.
Components of Contact
* Last Name
» First Name
e Middle Name (0:1)
« Company

e Street

Design Guide
30

Chapter 1 — Mercator Tutorial

* City

e State

e ZipCode

* AreaCode
* Phone

The first component in the list is Last Name Field. The next component is First Name Field, and so on.

The Middle Name component has a range—(0:1). In a range, the first number in the parentheses is the

minimum number of consecutive occurrences of this component. The second number is the maximum

number of consecutive occurrences of this component. There may be between zero and one occurrence
of Middle Name in the data. Middle Name does not have to appear at all; it is optional.

To Define the Components of Contact
1 Double-click the type Contact.
Or, select the type Contact, and press the enter key.

The component window of Contact is displayed. The complete name of the type is displayed in the title
bar of the component window. The complete name begins at the type and includes the names of the
types on the path up to the root type. The complete name of this type is:

Contact Data

* Contact Data =] B

o o

Cormponent Fule

Note To define components, drag and drop types from the type tree into the component window. To do
this properly, make sure the two windows—the type tree window and the component window—do not
overlap.

2 Use the Tile command, in the Window menu to arrange the type tree window and the
component window so that they do not overlap.

Design Guide
31

Chapter 1 — Mercator Tutorial

You might arrange your windows to look like this:

E Addresz MTT M=l
i EE

- @ Contact
[]
5 @ Fisld Contact Data Mi=] &3
- @ AreaCode j‘

CityStateZip | :

Cormpany Compaonent Rule

Mame |
- @ First
@ Full

Street
- @ ZipCode
- @ Label

In the component window, there are two columns—the Component column, and the Rule column.
Move the line that separates the two columns. Right now, work with the Component column. Move
the line so that only the Component column is in sight. To do this, select it with the mouse, and drag
it over.

3 Move the column separator to the right, to increase the size of the Component column.

4 Drag and drop the type Last from the tree into the component cell.

To select the type, select any part of its name, or its icon.

Design Guide
32

Chapter 1 — Mercator Tutorial

E Address MTT M=l E3
@ Data '*# | Contact Data O] x|
- @ Contact AI

= @ Field -
- @ AreaCode LI _’l_l

- i City
.) Component Fule
- @ CityStateZip B

- @ Campany |
B @ Name {1
- @ First
@ Full
o @ Middle
- @ Phone
- i@ State
- i@ Street

- @ ZipCode
- @ Lahel

After you drag and drop the type, you see the component name, Last Name Field, in the component cell.
This name is a relative type name. It reflects the location of the component type, with respect to the type
being defined.

E. Address MTT M=l
@ Data

- @ Contact '# | Contact Data _ O] x|
E- @ Field Last Name Field -

- @ fAreaCode e
City ll 3
CityStateZip Component Rule

Company _1|Last Name Field
Mame |

- @ First
@ Full
@ Middle
@ Phone
- i@ State
@ Strest

- ZipCode
- @ Label

Design Guide
33

Chapter 1 — Mercator Tutorial

Now, define the rest of the components by dragging and dropping the component types into the
component window.

Look at the list of Contact’s components. The component after Last Name is First Name. So, First Name
is the next component to define. Drag and drop the First item into the component cell beneath Last
Name Field. Continue to define the rest of the components this way, until all of the components of
Contact are defined.

Each time a component is added to the window, a new cell is created. The cells may scroll up, and seem
to disappear. To see these components, use the scroll bar on the right side of the component window, or
make the component window bigger.

To Add Component Range for Middle Name Field

1 Select the component Middle Name Field. Notice that the selected component appears in
the rule bar, as shown below.

* | Contact Data M =] B4

Middle Mame Field ‘I

KN _>I_I
Component Fule

| |Last Mame Field

| |First Mame Field

[Middle Mare Field

) |Company Field Set Hange i E3

| |Street Field

|| City Field bdirn: IE M ax: |1

] [5tate Field

) |ZinCode Field ITI Cancel |

| |~reaCode Field

| |Phone Field

The component name is displayed in the rule bar.

2 With the mouse, click in the rule bar to the right of the component name.
3 Type a space, and then (0:1).

4 Press the enter key.

When the components of Contact are defined, the component window should look like this:

Design Guide
34

Chapter 1 — Mercator Tutorial

* Contact Data M=l E3

Middle Marme Field (0:1) -

ril

=

Component Fule
Last Mame Field
First Mame Field
Middle Marme Field (0:1)
Company Field
Street Field
City Field
State Field
ZipCode Field
AreaCode Field
Fhone Field

CCCCECCELEELE

When you close the component window (by clicking on the X in the upper right corner), you will be
prompted to save the changes you have made.

Components of Label

Look at the diagram of Label.

Full Name » Janes P Adans
Company - ABC Co.
Street » 29 Frankford Rd
_ _ » Bl oom ngton, | L, 60525
CityStateZip
Label

Make a list of its components, in their order of appearance in the data:
* Full Name

e Company

Design Guide
35

Chapter 1 — Mercator Tutorial

e Street

» CityStateZip

Defining the Components of Label

1 Double-click the type Label.

Or, select the type Label, and press the enter key.

The component window of Label is displayed.

2 Arrange the type tree window and the component window so that they do not overlap.
3 Move the column separator to the right, to increase the size of the Component column.
4 Drag and drop the type Full from the tree, into the component window.

The Full Name Field, is displayed in the component window.

Define the rest of Label’s components by dragging and dropping the component types from the tree.

When finished, the component window of Label should look like this:

@ Data
- @ Contact
El- @ Field
- @ AreaCode '# | Label D ata _ O] =]
-~ @ City Company Field ‘I
- @ CityStateZip _
S B Ormpant _IJ
= @ Mame ﬂ d
. @ First Cumpqnent Fule
@ Full 2 |Full Name F?eld |
@ Last | Cumpamr Field
- @ Middle)|strest Field
- @ Phone | CityStateZip Field
- i@ State
- i@ Street
- @ FZipCode
- & Label

Design Guide
36

Chapter 1 — Mercator Tutorial

Next, define properties of the types.

Defining Item Properties

To define properties of the Items, look at the table of properties in the Using the Type Tree Inheritance
section. The table gives you the values to enter for each property. Go down the list of types and define
the properties for each one—except for the Name types, because you already defined these.

Note: If the Max size is <none>, leave the Max box blank.
The hex value 20 is a space.

Many of the properties of the Items in this data are the default properties. When the Properties dialog is
displayed, you see that these values are already specified, and you do not have to change them.

To Define Properties of Each Item
1 Select the Item whose properties you want to define.
2 Bring up the Properties grid for the Name type.

Right-mouse click the new type and then select Properties.
Zz;

Or, hold down the aLt key and press the enter key.

Or, click the Properties tool.

The Properties grid is displayed.

3 Inthe Interpret as list, select the Item’s interpretation.

4 In the Size section, enter the minimum size in the Min box.
5 Enter the maximum size in the Max box.

6 Inthe Pad section, enter the pad character in the box. If it is a non-printable character,
select Hex from the View As list, and enter the hex value in the box.

7 Save changes.

Defining Group Properties

Each Group has a certain format. Some Groups are made up of a fixed number of components, and each
component has a fixed size. These Groups have a Fixed format. Some Groups have a delimiter

Design Guide
37

Chapter 1 — Mercator Tutorial

separating the components. These Groups have a Delimited format. Finally, some Groups are neither
Fixed nor Delimited, but their components appear in a certain pattern. These Groups have an Implied
format.

Properties of Contact

Look at the diagram for Contact. The comma is used as a delimiter. So, Contact has a Delimited format.

Adans, Janes, P, ABC Co., 29 Frankford Rd, Bl oonmi ngton, IL, 60525, 708, 3525555

A + + A A A A A A A
N I
First Name
Company Street City State Area code
Last Name *lf
’\ﬂgﬂ: Zip code Phone
Contact

When a Group is delimited, specify where the delimiter is displayed. Sometimes the delimiter is
displayed before each component—this is called Prefix. Sometimes the delimiter is displayed after each
component—this is called Postfix. When the delimiter is displayed between components, but not before
the first or after the last component, this is called Infix.

Because the comma is displayed between components, but not before the Last Name field, and not after
the Phone field, the location of the delimiter, in this example, is Infix.

In addition to the comma delimiter, Contact has another syntax object—the CR/LF, which is displayed
at the end of Contact. It cannot be seen because it is a combination of non-printable characters. The
CR/LF is defined as the Terminator of Contact. A Terminator is a syntax object that is displayed at the
end of a type.

To Define Properties of Contact
1 Select the type Contact.
2 Bring up the Properties grid for the Contact type.

Right-mouse click the new type and then select Properties.
Zz;

Or, hold down the aLt key and press the enter key.

Or, click the Properties tool.

The Properties grid is displayed.

3 Inthe Group Format section, select the value Explicit.

Design Guide
38

Chapter 1 — Mercator Tutorial

4 Click the Terminator field and select Literal from the drop-down list.

5 Click on the Value field, and you will see a Browse button. [21 click on this Browse button,
and the Symbols window is displayed.

Froperties for Contact D ata

Property Walle

....... Name Contact

------- Class Group

------- Description

------- Partitioned Mo

------- Order subtypes Ascending

#-- Format Explicit

------- Initiator Mone

= Terminator Literal
------- Yalue |_-|
#-- Mational language Western

------- Release Mone

------- Where Used

6 Inthe Symbols window, select CR. This is the value for Carriage Return.

Design Guide
39

Chapter 1 — Mercator Tutorial

Properties for Contact D ata
Froperty Walue
....... Mame contec
------- Class Sl
------- Description
....... Partitioned Mo
....... Order subtypes Ascending
e — Explicit
------- Initiator Hane
S Terminator Literal
------- ¥Yalue I_I
& National language il

Dezcrption Carmage Return

W alue: |<|:F|> g, |
MULL [SOH |sTx [ET® |EOT [Em@ [ack [BELL Cancel |
B |HT |LF |vT [FF [crR |so s

DLE |DC1 |DC2 [DC3 |Do4 [MaK [Syw [ETE

CAM EM |SUB [ESC FS |GS RS |US

P [ML [wwsP |KSP

7 Click OK.

Properties of Label

Look at the diagram of Label. Each field is on a separate line. To make this happen, you define a
carriage return to appear at the end of each field. The CR is the syntax object that separates the

components of Label. Therefore, CR is defined as the delimiter of Label.

Full Name

p ABC Co. <

Company

Street

CityStateZip

vy

Label

» Janes P Adans «——— CR Delimiter

CR Delimiter
29 Frankford Rd +<——CR Delimiter

Bl ooni ngton, I L, 60525 <«—— CR Delimiter

Design Guide
40

Chapter 1 — Mercator Tutorial

Because the CR delimiter is displayed after each component, the delimiter location is Postfix.

Later, you will produce a file of many labels. A blank line separates the labels. To do this you want
Mercator to put a new line at the end of each label. You will do this by inserting the NL function, for

new line.

To Define Properties of Label

1 Select the type Label.

2 Bring up the Properties grid for the Label type.

Right-mouse click on the new type and then select Properties.

Or, click the Properties tool.

%z,

Or, hold down the aLt key and press the enter key.

The Properties grid is displayed.

Properties for Label Data
Praperty Wallie
....... Mame Label
....... Class Group
------- Description
------- Partitioned Mo
....... oOrder subtypes Ascending
= Format Explicit
i Track Content
- Syntax Celimited
= Delimiter Literal
....... Yalue =MNL=
-~ Mational language Western
....... Location Postfix
....... Initiator Mone
o Terminator Literal
....... Yalue =ML=
-~ Mational language Western
....... Release Mone
------- Where Used

3 Inthe Format field, select the value Explicit.

4 Inthe Syntax field, select the value Delimited.

Design Guide
41

Chapter 1 — Mercator Tutorial

5 In the Value field, click on the Browse button and enter <NL>. This is the value for a new
line.

6 From the Location field, select the value Postfix.
7 In the Terminator field, select the value Literal.

The type tree is now finished. You created all the types, defined components, and defined properties.
Next, double-check that you have not made any mistakes.

Analyze the Type Tree

When you finish creating a type tree and defining all the types, always analyze the type tree. The Type
Tree Analyzer reveals if you defined types inconsistently, or failed to define the aspects of the types that
allow Mercator to recognize data objects.

Now, analyze the tree.

To Analyze the Type Tree

1 From the Tree menu, select Analyze, then, select Logic and Structure.

2 Click OK.

Mercator quickly goes through all of the analysis tasks. If your tree is error- and warning-free,
the dialog looks like this:

Analyze Tree [Logic and Structure] |
—Addrezs MTT

Besults |
Analyziz Complete.

T azk Completion

W arnings: 1] Errors: 1]

Analyzizs Results for E:AMercatoriADesign Guide\Chapter 01VAddress. MTT M= E3

End of analysis; no errors or warnings found.

Design Guide
42

Chapter 1 — Mercator Tutorial

3 If your tree is error free, Click Close.

Did you get errors? You can fix them and then analyze the tree again.

If You Have Errors
If you have errors, look at the error messages and warnings from the Type Tree Analyzer.

1 Inthe Analyze Tree dialog, click the Results button. The Results window is displayed.

The Results window includes the analysis errors and warnings. Here is an example of an error in the
Results window:

B Results - ADDRESS.MTT =] E3

L136 - COMPONENT "AreaCode Field® occurs more than once in list -
TYPE: 'Contact Data" [error]

[

For help in resolving errors see the topic, “Analyzer Error and Warning Messages,” in Chapter 15 — The
Type Tree Analyzer, of the Mercator Type Editor Reference Guide.

2 Fix the errors.

3 Analyze the tree again.

Save the Type Tree Again

When your type tree is error-free, save it again.

To Save the Type Tree

1 From the File menu, select Save.

=)

Now that you have a type tree, use the Map Editor to create a map.

Or, click the File Save tool.

Design Guide
43

Chapter 1 — Mercator Tutorial

Creating a Map

Use the Map Editor to create a map. A map defines how to create a data object of a specific type. The
data object you want to create is the mailing label. The map tells Mercator to generate the label by using
certain data objects from the contact record.

Here is a diagram of how to generate the Label data object from the Contact data object:

Last Name

First Name
™~
Middle
Name \\
Company ™| Full Name
\\
~>
Street Company
\\
City ™| Street
\\
Rl
State P CityStateZip
/—V
Zip code || Label
Area code
Phone
Contact

Map Cards

In the Map Editor, you create cards to represent data objects. Each card stands for one data object that
has been defined as a particular type. Output cards represent output data objects. Input cards represent
input data objects.

You want Mercator to generate one data object of the type Label. Therefore, create an output card to
represent this data object. You want Mercator to use one data object of the type Contact, to generate the
Label. Therefore, create an input card to represent this data object.

Your map consists of these cards:

Design Guide
44

Chapter 1 — Mercator Tutorial

Input Output

(Contact) (Label)

In the output card, you enter map rules that tell Mercator how to generate the label.

Using the Map Editor

Start the Map Editor by clicking Start, and then the Map Editor icon in the Mercator Group.

3P Command Engine

&!‘f D atabaze Editor
Click Here —» [ty Eraeie

@ Mercator Type Tree Maker Help
9& System Editar

%y Tupe Editar

B Type Tree Maker

Save the Source File

When you open the Map Editor, you see an empty file. This is the map source file. The name of this file
is initially untitled. You need to save this file with a new name.

)

1 Click on the New Map File tool.

The Save As dialog is displayed.

Design Guide
45

Chapter 1 — Mercator Tutorial

Save the source file in the Examples directory. This is where the data file is located. This makes
things easier later.

2 Double-click the Examples directory.

3 Inthe File Name box, type over the default name MapSourceFilel and enter mail.

Save As

Save jn: I £ mercatarZ. (0

Enamples

|1 Part
) Trees

File name; IMapS ourceFilel Open I
Save as bype: IMap Saource Files [*.mmsz) j Cancel |

4 Click OK.

Mercator adds the file name extension, .mms, which stands for Mercator Map Source. Now the file
name—mail.mms—is displayed in the title bar of the Map Editor. See the example on the following
page.

Design Guide
46

Chapter 1 — Mercator Tutorial

L Mescato MWap Editor - E:\Veercatos\Design Guide\Chapter 0136 ail. mms
Eie Ect Y Map Cod Bube Toos Wiedow Help
D J¥yLE BT L B SET D
A [
d
EEN 4 From M= |1 T o[-
B Map Source Files T yee—————
Iy
TP List #3compost.. | A A4
Heady

Rename the Map

Currently, the map you are building has no name. You need to name it.
This map transforms one Contact to one Label, so name it ContactToLabel.
1 From the Map menu, select New.

The Create New Map window is displayed.

Create New Map

Mew map name: ID::nta-:tT-:uLaI:ue[OF. I
Cancel |

2 Inthe New Map Name box, enter ContactTolLabel.

3 Click OK.

Now the name of the map is displayed in the title bar, right next to the file name you created earlier.

Design Guide
47

Chapter 1 — Mercator Tutorial

Create Map Cards

Now, create the cards to represent the input and output data objects.

To Create the Input Card
1 Select the From window.

2 From the Card menu, select New.

e oy

Or, click the Add Card tool.

The Add Input Card dialog is displayed.

@ Add Input Card [7]
|E:'xM ercatoriDezign GuidehChapter 0744 ail.rrmz

Setting Value
"""" CardMame |
....... TypeTres
....... TypeMame
=l InputData
"""" Cardkode Integral
"""" Workdrea IReuze
- Backup
=l AdapterSource File
"""" FileS ourcePath
"""" OnSuccess Keep

"""" OnF ailure Rollback
- AdapterR ety
"""" AdapterScope | Map
"""" Fetchldmit 5

] I Cancel

3 Inthe Card Name field, enter the value Contact.

The name of each card in a map must be unique. Mercator uses the card name to reference the data
object of the card.

4 In the value field for Type Tree, click the Browse button.

Design Guide
48

Chapter 1 — Mercator Tutorial

Each card represents a data object of a particular type. Select the type tree where that type has been
defined. The type of the input card is Contact. You defined this in the type tree address.mtt.

The Select Type Tree dialog is displayed.
5 Select the file address.mtt.
6 Inthe value field for Type Name, click the browse button to display the browse dialog.

The Browse dialog shows the type tree, as it is displayed in the Type Editor. If the entire tree is not
displayed in the window, use the scroll bar to view other parts of it.

8 Select the type Contact.

You are pointing Mercator to the particular type that defines this input data object—Contact.

Select Type |

2|
x|

Cancel

- i@ AreaCode
- @ City
- @ CityStateZip
- @ Company
- @ Mame
- @ First
@& Full
@ Last
@ Middle
- i@ Phone
- i@ State
- i@ Street
- @ LipCode
- @ Label

WS

Fird...

9 Click OK.

The complete name of the type—Contact Data—is displayed in the value field for the Type
Name setting.

The Data Source is a File.

10 Inthe AdapterSource value field, select File, if necessary (File is the default setting).

Design Guide
49

Chapter 1 — Mercator Tutorial

You need to tell Mercator where the input data is located. The data file, contact.txt, is one Contact data
object.

11 In the FileSourcePath value field, click the Browse button.

The Select Data File dialog is displayed:

Select Data File

Laoak in: I 5] Eramples

Aile [General E Address bt
Angi [(Aldocs

Audit (0 Ttmaker mail.bak
Burst Addresz.bak |i rnil. mrns
Copybank, Addrezs.dbe

Edifact E. Addrezs.mit

File name; IEDntact.t:-:t Select I
Filez of type: I.-'-‘-.II files [*.%] j Cancel |

12 Select the file contact.txt.

13 Click Select.

When you finish defining the card, the Add Input Card dialog should look like this:

Design Guide
50

Chapter 1 — Mercator Tutorial

@ Add Input Card [Contact) [7]
|E:'xh-1 ercatoriDezign GuidehChapter 074 aill. mms
Setting Walle |
"""" CardMame Contact
"""" TypeTies Addrezs. MTT
"""" TypeMame Contact Data
- IrnputData
"""" Cardhode Integral
"""" Whorkdrea IReuse
[#- Backup

Contact bat
Keep

"""" OnF ailure Rollback
- AdapterR ety
"""" AdapterScope | Map
"""" Fetchlnit E]

14 Click OK.

In the From window, the card you just created is displayed. The bottom of the window indicates that
there is 1 Card in this window.

The card number is displayed in the top left corner of the card. Input cards and output cards are
numbered consecutively.

The name of the card is displayed in two places—in the top left corner of the card, and next to the top
icon of the card.

The type of the card is displayed in the parentheses.

Click the top icon to expand. The components of Contact are displayed. When you expand a type that
has a + in a rectangular-shaped icon, you are showing the components of that type. A type with a
rectangle icon that cannot be expanded (it has a — in the icon) has no components, so it is an Item.

Design Guide
51

Chapter 1 — Mercator Tutorial

I [=] B3

- First Mame Field
~|Middle Mame Field {0:1)
~Company Field

- 5treet Field

-] City Field

-] 5tate Field

= ZipCode Field
~&reaCode Field

- JPhone Field

1 Cardis) EE

Now create the output card to represent the Label data object.

Create Output Card
1 Select the To window.

2 From the Card menu, select New.

e oy

(&

Or, click the Add Card tool.

The Add Output Card dialog is displayed.

Design Guide
52

Chapter 1 — Mercator Tutorial

@ Add Output Card [Label) [7]
|E:'xh-1 ercatoriDezign GuidehChapter 074 aill. mms
Setting Wallie |
"""" CardM ame Label
"""" TypeTies Addrezs. MTT
"""" TypeMame Label Data

=l AdapterT arget File
"""" FileT argetPath | label bt
----- OnSuccess Create
"""" OnF ailure Rollback
- AdapterF ety

....... AdapterScope | Map

0k I Cancel

3 Inthe Card Name field, enter Label.
4 Inthe TypeTree section, click the browse button.
The Select Type Tree dialog is displayed.
The type Label was defined in the type tree address.mtt.
5 Select the file, address.mtt.
6 Click OK.
7 In the TypeName field, click the browse button.
The browse dialog is displayed, showing the type tree address.mtt.
8 Select the type Label.
You are pointing Mercator to the particular type that defines the output data object—Label.
9 Click OK.
The complete name of the type—Label Data—is displayed in the Name box.
10 In the File section, enter label.txt in the Name box.

You are telling Mercator to create a data file named label.txt.

Design Guide
53

Chapter 1 — Mercator Tutorial

When finished, the Add Output Card dialog should look like this:

‘¥ Add Output Card [Label) [7]

|C:vmercator? DNERAMPLE Smail mms ContactT olabed

Setting Walue |
"""" Cardi ame Label
------- TypeTres Address mtt
....... TypeMame Label Data i
= DutputD ata
""" Backup
=1 Adapter T arget File
"""" FileT argetPath
"""" OnSuccess Create
"""" OnF ailure Rollback
- AdapterR ety
"""" AdapterScope | Map
ITI Cancel

11 Click OK.

The output card you created is displayed in the To window.

Design Guide
54

Chapter 1 — Mercator Tutorial

4 To I [=] B3

#1 Label (Label Data)
Cutput Rule
=] |Label
) Full Hame Field
| Company Field
| Street Field
] CityStateZip Field

1 Cardis) EE

Expand the top icon of the output card to see the components of Label:

The data objects shown when the type Label is expanded are the same as the Label’s component list that
was created in the address.mtt type tree.

Notice that the output card looks similar to the input card. However, the output card has two columns—
Output and Rule.

Next, you are going to enter map rules in the cells of the Rule column.

Enter Map Rules

A map rule tells Mercator how to generate a particular data object. Each component of Label has a rule
cell. In a given component’s rule cell, you enter a map rule, telling Mercator how to generate that
component. For example, the rule you enter for the output, Full Name Field, tells Mercator how to
generate the Full Name Field data object.

You enter a map rule for each component of Label—starting with the simplest map rule, and then the
more complex ones.

Each map rule begins with an equal sign (=).

Design Guide
55

Chapter 1 — Mercator Tutorial

Mapping to the Company Field

You want the Company Field of Label to look like the Company Field of Contact. Therefore, map the
Company Field from the input into the output.

Adans, Janes, P, ABC Co., 29 Frankford Rd, Bl oomi ngton,|L, 60525, 708, 3525555

Janes P Adans

ABC Co.

29 Frankford Rd

Bl oonmi ngton, IL 60525

To Enter Map Rule for Company Field

1 Select Company Field in the input card.

L Mercator Map Editor - E:\Mercator' D esign Gude\Chapber 018 ail. mms ConlactT olsbel

]EhEd'iﬂ-meEwﬂﬁnTwEHwHﬁ |
P88 yhE BT ES G L0 0

1 r

2 [AT L) i - 01|

|\l Map Source Files
= iy Mail #1 Contact (Contact Datal [#1 Label (Label Data)
i CantactToLabsl Sl Contart i output Faudia
JLast Hame Feld — =] Lkt
LlFrst Hame Field & Full Mama Field |:
Lriddle Hamea Fiald B Company Field h
M- cmpany Fisld gl Street Field
L Strest Fesld 4 CEyStabeZip Field
ZlCity Fimld
Zstats Fiald
SlZipCode Fiekd
DlAreslode Field -
RSy _*‘_I
48 Lisl 2 Compasl.. [i EE I |
Fieady | B Rl

2 Drag and drop Company Field on the input card, into the rule cell of Company Field on the
output card.

An equal sign is displayed in the rule bar, at the beginning. When you drag and drop an object into a
rule cell, Mercator inserts the equal sign automatically.

Design Guide
56

Chapter 1 — Mercator Tutorial

The Company Field:Contact name is displayed in the rule bar. The rule bar shows the entire contents of

the rule. In the output card—as shown in the picture of the previous Map Editor screen—the rule is only
partly visible.

The colon () represents a component. The name, Company Field:Contact, means “the Company Field

component of Contact.” The name represents the path of the object up the card to the top icon, or card
name.

Mapping to Street Field

You want to map the Street Field in Label from the Street Field in Contact.
Adans, Janes, P, ABC Co., 29 Frankford Rd, Bl ooni ngton, I L, 60525, 708, 3525555

Janes P Adans
ABC Co.
Frankford Rd
Bl oom ngton, IL 60525

To Enter Map Rule for Street Field
1 Select the object Street Field on the input card.
2 Drag and drop it into the rule cell for Street Field on the output card.

The object name, Street Field:Contact, is displayed in the rule bar.

Mapping to CityStateZip Field

You want the last line of the Label to include the city, state, and the zip code.
Adans, Janes, P, ABC Co., 29 Frankford Rd, Bl oomi ngton,|L, 60525, 708, 3525555

Janes P Adans
ABC Co.

29 Frankford Rd
Bl oomi ngton, IL 69?25

4

You want a comma and a space between the city and state, and another space between the state and zip
code.

You want the CityStateZip Field to look like this:

Design Guide
57

Chapter 1 — Mercator Tutorial

Bl oom ngton, IL 60525

The map rule you enter is a text concatenation, including the City, State, and ZipCode fields from
Contact, spaces, and a comma. To concatenate text, use the plus sign (+). Literal text values are
enclosed in double quotes (“ ™).

To Enter a Map Rule for CityStateZip Field

1 Select City Field on the input card.

2 Drag and drop City Field into the rule cell of CityStateZip Field.

You see =City Field:Contact in the rule bar.

3 Click in the rule bar, to the right of City Field:Contact, and type a space.

This space is to make the rule easier to read. You can enter spaces around object names, and
operators. These spaces do not affect the evaluation of the rule.

4 Type+*“ "+

ml-City Field:Cantact + -, + - |

Design Guide
58

Chapter 1 — Mercator Tutorial

5 Drag and drop the State Field from the input card up into the rule bar.
6 Type+“"+
7 Drag and drop ZipCode Field into the rule bar.

8 Press the enter key.

Note: To enter the rule into the rule cell, you must press ENTER.

Your rule should now look like this:

=City Field:Contact + ", " + State Field:Contact + " " + Z pCode
Fi el d: Cont act

= Mecalo Map Editos - E-\Mercstios\Desgn GuideAChapter 01 WEail mms ContactTolabel
|Ein Edt Vaw Mip Cod Bk Tods Wirdow Hep |
e E 8 LB RS FF SE W
q-l:ltg' Fiehd:Cancadt + 7, 7 + State Feld:Contact + ~ 7 + ZipCode Fiehd: Contact ;I
| d
b M From ol -] B Lol
B Map Source Files -
= [y M #) Contact (Contact Data) #1 Label (Label Data)
@ ContectTolabel El Contact = output Fuda
Clast Hame Field Bl Labs
DFirst Mame Field 2 Full Mama Field
Eriddis Mame Fiald & Company Field =Comgpsany Field
SlCompany Field 4 Strest Fsld =5trael Field:C
Blsrreet Field 1 CitystateZip Field [=City Fisld:Con |
SlCity Fimld
Bl State Field
_lEII'J':I:Ile' '_IE'|E|
Dl&resCade Feld =
Iy _FIJ
P List #3Composh. | i - 1
Rady [

Mapping to Full Name Field

You want to map the First, Middle, and Last Name Fields in the Contact, to the Full Name Field in the
Label.

Design Guide
59

Chapter 1 — Mercator Tutorial

Remember that the Middle Name Field is optional—it does not have to appear in the data. Some people
do not have a middle name. If the contact person does not have a middle name, you do not want to map
the Middle Name Field.

Use a rule that checks to see if the Middle Name Field is present. If it is, you map it to the Full Name
Field. If it is not, you do not map it.

Design Guide
60

Chapter 1 — Mercator Tutorial

Functions Used in Map Rule
This rule uses two Mercator functions:

* PRESENT

. IF

The PRESENT function checks the presence of an object. If the object is present, the function returns
the boolean TRUE. If the object is not present, the function returns the boolean FALSE. The syntax of
the PRESENT function is:

PRESENT (Object to check the presence of)

The IF function has three arguments. The first argument is a condition. If it is TRUE, Mercator
performs the second argument. If it is FALSE, Mercator performs the third argument. The syntax of the
IF function is:

IF (Condition, Do this if the condition is met, Do this if the condition is not met)

A description of the map rule is: “If the Middle Name Field is present, map the First, Middle, and Last
Name Fields. If the Middle Name Field is not present, map only the First and Last Name Fields.”

The outer function in the map rule is the IF function. Its first argument is the PRESENT function. The
PRESENT function performs the test of a condition. The second argument for the IF is the text
concatenation of the first, middle and last name—uwhat to map if the condition is true. The third
argument for the IF is a text concatenation of the first and last name—excluding the middle name—
what to map if the condition is false.

Design Guide
61

Chapter 1 — Mercator Tutorial

The rule you enter looks like this:

=| F(PRESENT(M ddl e Nanme Fi el d: Cont act),

First Nanme Field:Contact + " " + Mddle Nane Field: Contact + " " +
Last Nane Fi el d: Cont act,
First Nane Field: Contact + " " + Last Nane Fiel d: Contact)

To Enter a Map Rule for Full Name Field

1

2

Select the rule cell next to Full Name Field.

From the Rules menu, select Insert Function.

The Insert Function dialog is displayed, with a list of all Mercator functions.

Furchions: Drasciphon

FROMBESETER ;' E wahistas 5 condbicnal sxspresson, retunrg ore valus of hue, snother § fase _|

FROSS0E TE Tt

FRO&LIMBER S prhaed

GET =

LBETARDSET |F [Sorg b st e ecs o . Sngle-gerer d-apisdgn | . ande-gendishegpiaing | |

GETDIRECTOY

GETFILEMASME Mearing

LBETESRTITROMMESRE

GETRESOURCERLEASE IF [oS ropull_ it [ool False |

HESTEXTTOSTHREAM

OONMRSSRNRRRORRRRNNE (Fietuen | singie-herm o sigde-group]

INDE =l H
| Ok I il

3

4

Scroll down the list of functions until you find IF, and select it.

Click OK.

In the rule bar =IF() is displayed. The cursor is displayed between the parentheses, ready for
you to enter the first argument of the function.

5

6

10

To make the rule easier to read, type a few spaces.
Select Insert Function from the Rules menu.
Select the PRESENT function.

Click OK.

Type a few spaces.

Drag and drop Middle Name Field into the rule bar, between the parentheses of the
PRESENT function.

Design Guide
62

Chapter 1 — Mercator Tutorial

&ll=1F { PRESENT { Middle Name Figld:Contact | - |

11

12

13

14

15

16

17

18

19

20

21

22

23

24

After the end parenthesis of the PRESENT function, type a comma, and a space.
Drag and drop First Name Field into the rule bar, after the space you just typed.
Type +* "+

Type a space.

Drag and drop Middle Name Field up into the rule bar.

Type +° 7+

Type a space.

Drag and drop Last Name Field into the rule bar.

Type a comma, and a space.

Drag and drop First Name Field into the rule bar.

Type + "7+

Type a space.

Drag and drop Last Name Field into the rule bar.

Press the enter key.

Design Guide
63

Chapter 1 — Mercator Tutorial

When you finish, the map rule should look like this:

ﬂ =]F { PRESEMNT { Miadle Name Field:Contack) |, First Mams Feedd: Contact + & 7 + Midadle Hame ;l
JIFigld: Contact + . " + Last Mame Field:Contact , First Mame Field:Contact + © " + Last Mame
|[|Fieidt: Contact) -

You can format the map rule to be more easily read.

To Format a Map Rule for Full Name Field

1 Inthe rule bar, click to the right of the first comma.

Click Here
ﬂ =1F [PRESEMNT § Middle Name Field:Contack |, First Mame Fsld: Contact + & & = Midadle Name j
JIFigld: Contact + Y. " + Last Mame Field:Contact , First Mame Field:Contact + © ' + Last Mame
|[|Fietd: Contact) -

2 Hold down the cTr. key, and press the enter key.

A new line is created in the rule bar.

ﬂ =IF { PRESENT { Middle Name Field:Contact | , _ =
- First Name Field:Contact + " © + Middle Mame Fisld:Contact + ~. © + Last Name Field:Contact ,
] First Mame Field: Contack + " © + Last Name Field:Conkact | |

3 Align the second line under the first line, by typing as many spaces as necessary. For
example, you might want the second line to begin under the “P” of the PRESENT function.

4 Click after the second comma.
5 Hold down the ctr. key, and press the enter key.
6 Align the third line under the second line.

7 Press the enter key.

Design Guide
64

Chapter 1 — Mercator Tutorial

When you finish, your rule should look like this:

= Mescaton Map Eddor - E-\Hercstos\Dessgn Guide\Chapter 01V ail mme ContactTolabeld

|Ele £ Vaw Map Cowd Bk Took laiedow Hep |
e E 8 EDhE RS T SE W

=[F [FEESENT [Middle Mame Field: Cankact), ;I
- First Name Fisld: Conkact = ' + Middle Name Fisld:Contact = . % + Last Name Field: Conkat |
ﬁ First Mame Fasld:Contact &+ " + Last Name Fiald:Contact 3 -
—rl'd) Fapm .ITH $ To M= I
1r-1.:|: Sourcs Files
= [y #1 Contact (Contact Data) #1 Labal (Label Data)
@ ContactToLshal ElContact = Cutput Fule
SLast Hame Field p— =1 Label
LFirst Masme Fiald 2 Full Name Fial @
Zleiddle Mame Fiald [0:1] & Company Fial =Company F
ECompany Fiald o StrestField | =Sirest Fis
Clstrest Field o) Citysesteip F =City Fiald:
SCiby Fiald
Hlstate Field
MiFipCode Field
_&reaCode Field
| sotoes Fisld et
O Lisl # 1 Composk.]. | Ga L[| 1 Card i
Ready N A

Save the Source File

Now save the map file.

1 From the File menu, select Save.

Or, click the File Save tool. E

Build the Map

After entering map rules, you build the map.

To Build the Map

1 From the Map menu, select Build.

Design Guide
65

Chapter 1 — Mercator Tutorial

7o
Or, click the Build tool. @

The Building Map dialog is displayed, and Mercator analyzes the map rules. If no errors occur,
Mercator compiles the map.

If You Have Errors

1 Inthe Building Map dialog, click the Results button.
2 Fix the errors.

3 Build the map again.

For help in resolving errors, see Chapter 11 — Building a Map, in the Map Editor Reference Guide.

Run the Map

You can run the map from the Building Map dialog.

To Run the Map
1 Inthe Building Map dialog, click Run.

Or, if you do not have the Building Map dialog displayed, select Run from the Map menu.

The Command Execution Engine window is displayed.

Or, click the Run tool.

Mercator Execution Engine |

Map: ContactTolabel

b ap completed succeszfully
Elapzed Time: 0:00

[nput: 1 af 1 Objectz: 11
Cutput: 1 of 1 Objectz: 5

Design Guide
66

Chapter 1 — Mercator Tutorial

You should see the message, Map completed successfully, in the engine window. If you do
not have this message, see Chapter 15 — Debugging a Map, in the Map Editor Reference
Guide. The time shown in the window may be different from that shown above.

2 From the File menu in the Engine window, select Exit.

View Results

Now, look at the results of your map.

To View Results

1 From the View menu, select Run Results.

&

Each data file is displayed in its own window.

Or, click the View Run Results tool.

Run Resultz |

Ea ContactT alLabel ak. I
""" #1 Contact
- #1 Label Caricel |

[Display In Hex Mode

Select a data file and click OK. You will then see the results.

Design Guide
67

Chapter 1 — Mercator Tutorial

o Mescabol Map Edboi - EUeicabonDesign Gude\ Chapien 01 \Mal mn: Comdact T ol abe
| B Ede Yew Map Cwd Bues Took Windo Heb |
pepe2n |8 ¥re nAatew |t s w
ﬂ ulF { PRESENT [Middle Mame Figld:Contact | , a
- First Name Field:Conkact + 7 7 + Middle Mame FeldiContact + 7. 7 + Last Name Fuald: Contact ,
H First Hame Field:Contact + " " + Last Mame Feeld:Cantact:) -1
e P [C] [
mr«hn Sourck Files :
=1 [y Mail
& ContactToLabel
E:sMearcatoWliesign GuideChapter 01 ylabel bt M=
ABC (o,
28 Frargford Rd
Bloomirgton, IL 80525
A
3 Lis 3 Ot I- il a1 . A1
Rasdy N B
Output File

Input File

CONGRATULATIONS! You have completed your first map.

Design Guide
68

Chapter 2 — Mapping Records

Chapter 2 — Mapping Records

This chapter explains how to map a file of multiple records to another file of multiple records. It
discusses using a previously created executable map as a functional map. This example builds on the
work you did in Chapter 1.

What You Want to Do

You have a file that contains many contact records. You want to generate a file of many labels—one
label per contact record.

How to Do It

You already created a type tree that defines one contact record and one mailing label. You need to
define the entire file made up of many contact records and the entire file made up of many labels.

Then, in the Map Editor, you create a map that maps the contact file to the label file.

Files Used in This Chapter

The following table lists the input file to use and the files to modify and create, as you work through the
example in this chapter.

File Use

address.txt Use this data file as input. It is located in your
mercator\examples folder (directory in Windows
XX).

address.mtt ~ Modify this type tree file that you created by
working through the tutorial in Chapter 1.

mail.mms Modify this map source file that you created by
working through the tutorial in Chapter 1.
mail.txt Running the completed map creates this output file.
Design Guide

69

Chapter 2 — Mapping Records

Data Descriptions

Following are descriptions of the input and output data for this example.

Input Data

The input data file, address.txt, is made up of an unknown number of contact records.

Here is a portion of the data:

Adans, Janes, P, ABC Co., 29 Frankford Rd, Bl oom ngton, | L, 60525, 708, 3525555

M1l er, Maria, B, Conrad Corp, 1234 Smith St, Buffal o Grove, CA 60089, 708, 3334567
Smith, Fred, A Sand I nc., Beach Street, Pisno Beach, FL, 33321, 407, 8123456

Vel di n, Beth, M Any Co., 697 Berry Road, H ghl and Park, I L, 60012, 708, 4445987

Each contact record matches the definition from Chapter 1.

Optional Data Objects

The Middle Name Field is optional. When it does not exist in the data, the comma delimiter still is
displayed—as a placeholder for that field.

For example, Mary Martin does not have a middle name, so there is no data for the Middle Name Field.
However, the comma is displayed, to indicate that field.

Martin, Mary, , Hooks and Hangers, 123 Neverl and Ave, Sky, TX, 44444, 302, 6616000

Comma Serves as Placeholder

Output Data

The output data is a file of mailing labels. You want to generate one label per contact record in the
input.

The labels should look like this:

Design Guide
70

Chapter 2 — Mapping Records

Janes P Adans

ABC Co.

29 Frankford Rd

Bl oom ngton, | L 60525
Maria B M1 1ler

Conrad Corp

1234 Smith St

Buf fal o Grove, CA 60089
Fred A Smth

Sand I nc.

Beach Street
Pi snb Beach, FL 33321

Each mailing label conforms to the definition from Chapter 1.

Using Type Editor

The first thing you need to do is define the input file and the output file in the address type tree.

To Create New Types

Create a type named ContactFile to represent the input file and a type named LabelFile to represent the
output file.

1 Inthe Type Editor, open the address.mtt type tree.
2 Create a Group called ContactFile under the root type.
3 Create a Group called LabelFile under the root type.

When you finish, the type tree should look like this:

Design Guide
71

Chapter 2 — Mapping Records

E. Address MTT M=l

@ Data
- @ Contact
- @ ContactFile
El- @ Field
- @ AreaCode
o i Cit'g.-'

@ CityStateZip
- @ company

@ Mame

- @ First
@ Full
@ Last
-~ @ Middle
Phone
State
Street
ZipCode
- @ Label
S B e File

Identifying Properties of File Types

The type ContactFile is made up of Contacts. To determine the format of ContactFile, you can ask the
following questions.

Is it fixed? No—ContactFile contains an unknown number of Contacts. It does not have a
fixed length.
Is it delimited? No—there is no delimiter between the components, Contacts, of ContactFile.

The CR/LF at the end of each Contact is already defined as the terminator of
Contact. It cannot be considered a delimiter of ContactFile.

Is it implied? Yes—if it is not fixed and it is not delimited, it is implied.

The format of LabelFile is also implied. It is made up of an unknown number of Labels.

Define Properties

You need to define the properties of ContactFile and LabelFile.

Define Properties of ContactFile

Design Guide
72

Chapter 2 — Mapping Records

Define ContactFile as having an implied format.

The default Group format is implied, because it is inherited from the root. Unless you changed it,
ContactFile should already be defined as implied.

Define Properties of LabelFile

Define LabelFile as having an implied format.

Identifying Components of File Types

The ContactFile is made up of an unknown number of Contacts. The range on the component Contact is

(s)-

The LabelFile is made up of an unknown number of Labels. The range on the component Label is (s).

Define Components

Now, you need to define the components of ContactFile and LabelFile.

To Define Components of ContactFile
1 Double-click ContactFile.
2 Drag and drop Contact into the component window of ContactFile.

3 Inthe Set Range window, type s in the Max field.

Design Guide
73

Chapter 2 — Mapping Records

F Addeezs MTT M=

& Dats
@ [Conta * Lomlacikile Dala I
& ContactFile Contact -]
| @ Field _J;I
@ areaCode 5] E
@ City Companent Rl

CitystateZip 2| Ccontact |
® Campany r—w_ﬂ—
E @ Name _
& First
@ Full Mo Mag[1
Last
& Middle | OE. | Cancel |
& Frhome
State
@ Street
TipCode
@ Label
@ LabelFile

4 Click OK.

F. Address MTT m=lE3

@ Data
@
- @ ContactFile
- @ Field
- @ AreaCode
@ City
- @ CityStatedip
L]
(]

company

. Mame ® ContactFile Data !E
- @ First Contact (5) j‘

@ Ful |

- @ Last] »

o @ Middle Component Rule

Phone £ | Contact (s)
State

Street
ZipCode

- @ Label
- @ LabelFile

Design Guide
74

Chapter 2 — Mapping Records

5 Save ContactFile.

6 Close ContactFile.

To Define Components of LabelFile
1 Double-click LabelFile.
2 Drag and drop Label into the component window of LabelFile.

3 Inthe Set Range window, type s in the Max field.

E. Addresz MTT =]

@ Data
- @ Contact
- @ ContactFile
El- @ Field
- @ AreaCode
o i Cit'g.-'

@ CityStateZip
- @ company
@

b Mame # LabelFile Data [_ (O] x]
= i@ FIrst =

@ Full Label (=)

e last |4 L|_I

L@ Middle Component Rule
- @ Phone 1| Label (s}
- @ State
"]
"]

Street

ZipCode

- & LabelFile

4 Save LabelFile.

5 Close LabelFile.

To Analyze Type Tree

After you change a type tree, always analyze it, to make sure the changes made are consistent with the
entire definition.

1 From the Tree menu, select Analyze.

2 Click OK.

Design Guide
75

Chapter 2 — Mapping Records

If you get analysis errors, refer to the topic “Analyzer Error and Warning Messages,” in Chapter 15 —
The Type Tree Analyzer, of the Type Editor Reference Guide.

To Save Type Tree
After analyzing the tree, save it again.

1 From the File menu, select Save.

=

Or, click the File Save tool.

Using Map Editor

To generate the LabelFile, create a map and store it in the source file created in Chapter 1—mail.mms.
Name the new map AddressToLabelFile.

To Create a New Map

1 Inthe Map Editor, open the file mail.mms. It is located in the mercator\examples folder.
2 From the Map menu, select New.

The Create New Map dialog is displayed.

3 Enter AddressToLabelFile in the New Map Name box.

4 Click OK.

You see the new map, AddressToLabelFile.

Create Cards

In this map, the input is ContactFile and the output is LabelFile. Create an input card for ContactFile
and an output card for LabelFile.

To Create an Input Card

1 Select the From window.

2 From the Card menu, select Add Input.
3 Inthe Card Name box, enter ContactFile.
4 Click the Files button in the Type section.

5 Select the Mercator Type Tree address.mtt and click OK.

Design Guide
76

Chapter 2 — Mapping Records

6 Click the Browse button.

7 Select the type ContactFile and click OK.
8 In the Data section, click the Files button.
9 Select the file address.txt and click OK.

10 Click OK.

To Create an Output Card

1 Select the To window.

2 From the Card menu, select Add Output.

3 Inthe Card Name box, enter LabelFile.

4 Inthe Type section, click the Files button.

5 Select the Mercator Type Tree address.mtt and click OK.
6 Click the Browse button.

7 Select the type LabelFile and click OK.

8 In the Name box of the File section, enter mail.txt.

9 Click OK.

The expanded output card should look like this:

Design Guide
77

Chapter 2 — Mapping Records

@ Add Output Card [BunchOfLabels)

|E:'\M ercatortDezign GuidehChapter 024M ail. mmz

Setting

y BunchOfLab
------ TopeTree Addrezz MTT
------ TypeM ame LabelFile D ata
= OutputD ata
""" Backup
=l AdapterT arget File
"""" FileT argetFath | Labels tat
----- OnSuccess Create
"""" OnF ailure Rallback
F- AdapterR ety

....... AdapterScope | Map

Caricel

o]

Enter Map Rules

Expand the output so you can see all of the nested components. Notice that the only empty rule cell is
on the output Label (s). There is an unknown number of Labels. Whenever an output Group has a range
that indicates more than one occurrence, you must decide how many of that output you want to
generate.

How many Labels do you want to generate?

You want to generate one Label per Contact in the input—you want as many Labels as there are
Contacts.

Design Guide
78

Chapter 2 — Mapping Records

Contact > Label
Contact Label
Contact Label
Contact Label
Contact Label
AddressFile MailingFile

To generate one occurrence of an output Group for each occurrence of an input, use a functional map.

You need a functional map that makes one Label from one Contact. You already have a map like that!
You created it in Chapter 1—the map ContactToLabel. You used it before as an executable map—the
top level map, the one in charge of all the data. Now, use it as a functional map.

To Enter Map Rule for Output Label (s)
1 Select the rule cell for Label (s).
2 From the Rules menu, select Insert Function.

3 The Insert Map/Function dialog is displayed.

Design Guide
79

Chapter 2 — Mapping Records

4

1‘_ To

I [=] B3

#1 BunchofLabels (LabelFile Data)

output
=] BunchiofLabels
=l Label (=)
) Full Hame Field
| Company Field
] Street Field
) City5StateZip Field

Rule

1 Card(s)

Select the map ContactToLabel.

5 Click OK.

6

In the rule bar you see =ContactToLabel ()

Design Guide
80

Chapter 2 — Mapping Records

£ Mercator Map Editor - E:AMercator\Design Guide\Chapter 02\M ail. mm: ContactFileT oLabelFile M=] E3

File Edt “iew Map Card Bules Toolz Window Help |

|
a2 8|vme vseteo® 99

o & W
fll =ContactToLabel (|} - |
F
I =
il e} From =] EE |t To =] B
FE Map Source Files
=By Mail #1 FileOfContacts (Conta #1 BunchOfLabels (LabelFile D
G- & ContactFileToLabelFil ;_lEiIeOfCuntac:té (=5 Output Rule
=@ ContactToLahel “[E]Contact (=) | = BunchofLabe
=-E Input Cards - Last Mame Fig =l Label(s) =Cant
. - #1 Contact | JFirst Mame Fie] Full Mame Fie
E}..Output Cards -~ CIMiddle Mame F] ' Company Fie
[#1 Label -] Company Fielc] | Street Field
|| 5treet Field] CityStateZip
-] City Field
- 5tate Field
- ZipCode Field
- lareaCode Fieli«
|] | k
Oi= st [¥32 Cumpusitinnl 1 Card(s) e 1 Cardis) A
Ready S

7 Drag and drop the input Contact up into the rule bar, between the parentheses.
8 The object name Contact:ContactFile is displayed.
9 Press the enter key.

The map should look like this:

Design Guide
81

Chapter 2 — Mapping Records

£ Mercator Map Editor - E:AMercator\Design Guide\Chapter 02\M ail. mm: ContactFileT oLabelFile M=] E3
J File Edt “iew Map Card Bules Toolz Window Help |
a2 B |8 e BsRred Y 2 R
il =ContactToLabel { Contact:FileOfContacks) ;l
F
[g
M e} From =] Bl To =] B
FE Map Source Files
=By Mail #1 FileOfContacts (Conta #1 BunchOfLabels (LabelFile D
G- & ContactFileToLabelFil ElFile0fContacts (= Cutput Rule
=& ContactToLabel - Zlcontact (s) = = BunchOfLabe
=-E Input Cards - Last Mame Fig =l Label(s) =Cant
- [#1 Contact ~ JFirst Mame Fie 2 Full Mame Fie
= output Cards ~CIMiddle Mame F) Cormpany Fie
[#1 Label -] Company Fielc] | Street Field
|| 5treet Field] CityStateZip
-] City Field
- 5tate Field
-] ZipCode Field
~|ClareaCode Fielie
|] 1| »
M2 List |# 3 Composition | 1 Card(s) i 1 Card(s) Hi
Ready S

To Build the Map

1 From the Map menu, choose Build.

&

If you have errors, see Chapter 11 — Building a Map, in the Map Editor Reference Guide.

Or, select the Build tool.

To Run the Map

1 Inthe Build Map dialog, click the Run button.

-

The Execution Engine dialog is displayed. After Mercator is finished running the map, you see
the message, Map completed successfully. If you did not receive this message, see Chapter
15 — Debugging a Map, in the Map Editor Reference Guide.

Or, select the Run tool.

Design Guide
82

Chapter 2 — Mapping Records

Mercator Execution Engine |

b ap: ContactFileT ol abelFile

Map completed zuccessfully
Elapzed Time: 0:00

[nput: 1 of 1 Objects: 3841
Output: 1 of 1 Ohbjects: 1801

1 Click Cancel to exit this dialog.

Note: Your map’s execution time may be different from what is shown here. Execution times may vary
from machine to machine.

Design Guide
83

Chapter 2 — Mapping Records

To View the Results

1 From the Map menu, choose Run Results.

&

You should see the input file, address.txt, and the output file, mail.txt, each in a separate window.

Or, select the View run results tool.

£ Mercator Map Editor - E:AMercator\Design Guide\Chapter 02\M ail. mm: ContactFileT oLabelFile M=] E3

File Edt “iew Map Card Bules Toolz Window Help |

|
Pae2 a8 2 e s s ae e 2

il =ContactToLabel { Contact:FileOfContacks) ;l
F
izl =l
FBMap Source Files
EPEbrﬂaH Adams , James,F,ARC Co.,29 Frankford Rd,Bloomington,IL,f05 .
--QCnntactFiIeToLab Miller ,Maria,B,Conrad Corp,1234 Smith St,Buffalo Growve,
é}--QCnntactTnLabel smith,Fred,A,Sand Inc.,Beach Street,Pismo Beach,FL,33321
é} I ¢ card Yeldin,Beth,M,Any Co.,897 Berry Road,.Highland Par‘k,IL,EOd
- nput Cards RN os L ST : et Al R e
: #1 Contad Et: Outputfil BunchOfLabel: - E:\Mercator\Desi._. [l[=] E3 |
2 [E output Cards ig’gegup- Arlams ‘|]
[#1 Label 29 Frankford Rd

Bloomington, IL 60525

Maria BE. Miller

Conrad Carp

1234 smith 5t

Buffalo Crowve, CA ADOS9

4| | _;l Er‘edl A smith Ll |
Mz List [*2 Composi. | 1 Card(s) Al 1 Card(s) HH
Ready S

Now, save your work.

To Save the Source File

1 From the File menu, select Save.

Or, click the File Save tool.

Design Guide
84

Chapter 3 - Using the UNIQUE Function

Chapter 3 - Using the UNIQUE
Function

This example uses the UNIQUE function, to map data based on unique data values.

What You Want to Do

You may have noticed that some of the contact records in the address file occur multiple times. Suppose
that you do not want to create duplicate contact records. You want to generate a file containing only the
unique contact records.

How to Do It

You can modify the map you already created—AddressToLabelFile—in the source file mail.mms. To
map only the unique contacts, you use the UNIQUE function.

Design Guide
85

Chapter 3 - Using the UNIQUE Function

Files Used in this Example

This table lists the input file to use, and the files to modify and create, as you work through the example
in this chapter.

File Use

address.txt Use as an input data file. It is located in your
mercator\examples folder (directory in Windows 3.1).

address.mtt You use this type tree file that you created in Chapter 1
and modified in Chapter 2.

mail.mms You modify this map source file that you created in
Chapter 1 and modified in Chapter 2.

unique.txt This output file is created by running the completed
map.

Using the Map Editor

In the Map Editor, you copy the input card from AddressToLabelFile, to a new map. This automatically
copies the input card and generates the new map at the same time. Name the new map UnigueContacts.

To Copy the Input Card to the Input of a New Map

1 Inthe Map Editor, choose Open from the File menu. Open the file mail.mms. It is located
in the mercator\examples folder.

You should see the map AddressToLabelFile. If you do not, choose it from the Map Source
Files list.

2 Select the input card.

3 From the Card menu, select Copy.

The Copy Input Card dialog is displayed.

4 In the Map section, enter UniqgueContacts.
5 Click OK.

Because the output of this map is going to also be an Address File, you can copy the same card to the
output of UniqueContacts.

To Copy the Input Card to the Output of a New Map

Design Guide
86

Chapter 3 - Using the UNIQUE Function

1 Select the input card in the map AddressToLabelFile.

2 From the Card menu, select Copy.

The Copy Input Card dialog is displayed.

3 Inthe Map section enter UniqueContacts.

4 Inthe Card Name section, enter UniqueContactsFile

5 Inthe Card section, select the Copy Card As Output button.
6 Click OK.

Now, go to the map UniqueContacts, by selecting it.

The map UniqueContacts is displayed.

o Harcalor Map Fdilon - - vneecsber'l 2 erplne il mme | inepm | enlacis

| e Ede W Map [awd Fuber Teok iindow Hebo
|28 & ¥he SR eH G L& 2

| H

2 - (] 1| EXE o
Mep Sowra Filas P
= iy meil [AuddressFie (AddressFie Dala) | ||l 7 UrigeCamacisFie (AddmessFie Daa)
@ AddressToLebelF = AddrassFie Output Bhuig
@ ContaciTaLabel somac 5] 2l UnigmComacisFil
4 i UnigueContacts SlLast Mame Fisld &l Comact () [
Stk la M Fiald [007)
Ml Frst Hama Field
Bl Carmpary Field
B St Febd
Bl iy Freid
2l St Fisid
2l TpCacs Fald
Sl AranCode Feld
1] | o
et . Al T
ity [oW

To Edit the Output Card

You do not want to overwrite the input data file, so you need to change the name of the output data file.

Design Guide
87

Chapter 3 - Using the UNIQUE Function

1 Select the output card.

2 From the Card menu, select Edit.

3 Inthe Name box of the File section, enter unique.txt.

4 Click OK.

In this map, you want to map only the unique Contacts. You use the UNIQUE function.

The UNIQUE function evaluates a series of objects, belonging to some type. It returns the unique data
objects in that series. The syntax of the UNIQUE function is:

UNIQUE (Series whose unique objects you want)

To Enter the Map Rule

1 Expand the output until you see the Contact (s).
2 Select the Rule cell for Contact(s).

3 From the Rules menu, select Insert Function.

The Insert Function dialog is displayed.

1% Insert Function

Funchions: Dezcrption:

TOMUMEBER |= |Fetumns a seres containing all the unique |~
TRIMLEFT rembers of a senes.

TRIMRIGHT

| TRUMCATE Syntax

LIMIGILIE

IMPALCE. IIMIQUE [zenies-object-expreszsion |

INZ0OME

IPFPERCASE b eaning

WALID

WHEM IMIGLUE [zenesz_to_evaluate | -
WORD — LI
Z0ME [

] I Cancel |

4 From the list of functions, select the UNIQUE function.
5 Click OK.
You see UNIQUE () in the map rule.

7 Drag Contact from the input into the rule bar and drop between the parentheses.

8 Press the enter key.

Design Guide
88

Chapter 3 - Using the UNIQUE Function

= Herrsfre Hap b dEm - L urercsborl) sanmple s insl mms | brequsl onlache

| Fe Edt e bap ot Fube Took Wi e
EEEICIEET LY LA

_-:ﬂl- UM LE CamectAddrazcFika) H
=L [Fo =10l] EED o]
o Men Source Files r——————
& mai (#1 AderassFiks (AddessFile Data) [#1 UnigueCaomactFie (AddrassFile Do)
4+ i AddressToLebelF SladirassFila Dulpul Rule
4 @ ContactToLabel :l =l UmiqueConfacisFile
4 i Unaque Contects Bl Last Mera Fiald 1) Contact [3) [=LIMIGUE i ant

ol Middle Mame Fiald [I077)
L Firsl Mers Fiald

B Company Fiald

Bl Stract Fisld

M| Ciby Figld

| Eisia Fialo

B dipCode Fed

B sresCode Field

To Build the Map

2 From the Map menu, choose Build.

f’%@
Or, select the Build tool.

If you have errors, see Chapter 11 — Building a Map, in the Map Editor Reference Guide.

To Run the Map

2 In the Build Map dialog, click the Run button.

=7

The Execution Engine dialog is displayed. After Mercator finishes running the map, you see the
message, Map completed successfully. If you do not get this message, see Chapter 15 — Debugging a
Map, in the Map Editor Reference Guide.

Or, select the Run tool.

To View the Results

Design Guide
89

Chapter 3 - Using the UNIQUE Function

2 From the Map menu, choose Run Results.

&

The input file, address.txt, and the output file, unique.txt, are displayed—each in a separate window. In
the output, there are no duplicate contact record.

Or, select the View run results tool.

=UNIQUE[Contact:AddressFile)

B [p ! 3 _ O} =] ~

dans .James . P,ABC Co.,.29 Frankford Rd.Bloomington,.IL,68525,.788,3 .

Miller.Maria.B.Conrad Corp.1234 Smith St.Buffalo Grove.CA.6HA8T .7

#1 aaZnith.Fred.A.%and Inc..Beach Street.Pizmo Beach.FL.33321.487. 812
r land Park.IL.6B@12, 788,

[Input #1 ADDRESS.TXT M=l B coln Drive.Maryland.CA.

"Adams . James .P.ABC Co..2? Frankford Rd,BlDU%fi

and Ave,.Sky.TH,. 44444 38

Miller.Maria.B.Conrad Corp.1234 Smith St.B omington,IL,6B8525,788,3
gmith,.Fred.fA.%and Inc..Beach Street.Pismo St.Buffalo Grove.Ch.608
Veldin.Beth.M.Any Co..697 Berry Road.Highla |smo Beach.FL.33321.487,
Jones.Mary,. .McCormick Enterprises.??? Linco |d,Highland Park.IL,6881
Martin.Mary..Hooks and Hangers,123 Neverlan pive,Maryland.CA.19444,
Edams . James.P.ABC Co..2? Frankford Rd.Bloom |nd Ave,.Sky.TX.44444,3082
Ziller . Maria.B.Brackman’s Inc.1234 Smith 5t oomington,IL,68525, 708,
Browning.Fred.fA.5and Inc..Beach Street.Pism¥|l¢ Buffalo Grove.CH.6B088
1 *| #10 Beach,FL.33321,487.81
- - r 0 n land.CA,19444.415.66666
Martin,.Mary,. . Peter Pan Corp..123 Neverland Ave.Sky.T¥. 44444 302,
— Edans .James . P, ABC Co..29? Frankford Rd.Bloomington.IL.685%25,. 788,
=Ziller . Maria.B LLL’'=s.1234 Smith St.Buffalo Grove.CA.GBB8Y7.788.33
—Beldin,.Beth.M.Any Co..697 Berry Road.Highland Park.IL.60812,788.
Jones . Jack, .Mary’ =, 7?7 Lincoln Drive.Maryland.CA,19444_415%_ 66666
Martif. ar) . Pecer Pan Corp.;123 Newirland fue Shy 1X 44444, 302, v
1| |

I ra— ry T T T - O T

4] |

-

5

-

To Save the Source File
Finally, you need to save your work.

1 From the File menu, choose Save.

=

Or, select the Save tool.

Design Guide
90

Chapter 4 - Using the EXTRACT Function

Chapter 4 - Using the EXTRACT
Function

In this chapter, there are two examples that use the EXTRACT function to generate outputs only for
specific inputs. Beginning with Case 2, it is assumed that you are familiar with type trees and maps as
the result of working through previous chapters. Starting with Case 2 and in subsequent chapters, the
problem and solution are described, but the solution is not shown step-by-step.

Case 1 — Extracting Contacts for a Specific State

Suppose you want to create labels only for your California customers.

How to Do It

You modify the map you already created—AddressToLabelFile—in the source file mail.mms. To map
only the California contacts, use the EXTRACT function.

Files Used in Case 1

The following table lists the input file to use, and the files to modify and create, as you work through the
first example in this chapter.

File Use

address.txt Use as an input data file. It is located in your
mercator\examples folder.

address.mtt You use this type tree file, which was created in Chapter
1 and modified in Chapter 2.

mail.mms You modify this map source file, which was created in
Chapter 1 and then modified in Chapter 2. (Working
through the example in chapter 3 is not required.)

ca.txt This output file is created by running the completed map.

Design Guide
91

Chapter 4 - Using the EXTRACT Function

Using the Map Editor

You copy the map AddressToLabel File, save it under a new name and modify it. The new map is
named CaliforniaLabels.

To Copy the Map

1 Inthe Map Editor, open the file mail.mms. It is located in the mercator\examples folder.
You should see the map AddressToLabelFile. If you do not, choose it from the Maps list.

2 From the Map menu, choose Copy.

The Copy Map dialog is displayed.

3 Click the Browse button.

4 Select the file mail.mms

Copy Map |

Copy: [AddressToLabelFile Lo |

Cancel
Copy bo: Imail.mms I

Copy as: IEaIifDrniaLabeIs{ j

5 Click OK.

To Edit the Output Card

To avoid overwriting the data file you created with the AddressToLabelFile map, you change the name
of the output data file.

1 Select the output card.
2 From the Card menu, choose Edit.
3 Inthe File Target Path section, enter ca.txt.

4 Click OK.

Design Guide
92

Chapter 4 - Using the EXTRACT Function

Enter the Map Rule

Currently, the functional map ContactToLabel is used to map every contact to a label. In this example,
you will use the EXTRACT function so that ContactToLabel only maps contacts that have the value
“CA” in the State Field.

The EXTRACT function is used to select, from a series of objects of some type, all the ones that meet a
particular condition. It has two arguments. The first is the series you want to evaluate. The second is the
condition. EXTRACT returns the data objects of the first argument if any corresponding evaluation of
the second argument is TRUE. The syntax of the EXTRACT function is:

EXTRACT (Series whose objects you want to extract, Condition)

To Enter the Map Rule

1

2

Click in the rule bar.

From the Rules menu, select Insert Function.

The Insert Function dialog is displayed.

3

4

8

9

Scroll down the list of functions, and select EXTRACT.

Click OK.

You now see EXTRACT () inserted into the map rule.

Delete the end parenthesis of the EXTRACT function.

Type a comma after “Contact:ContactFile.”

Drag and drop State Field up into the rule bar, after the comma.
Type = “CA”

Type a right parenthesis at the very end of the rule.

10 Press the enterkey.

Design Guide
93

Chapter 4 - Using the EXTRACT Function

= Harcaltor Map b dilon - 1 vneecabort cempdne sl mmie | sl mmal abels

| Fle Ede Maw Map Cad Fuber Took window Helo
2R &8 ¥ne 3t ed G4 &
ﬂl-'“.ull‘al.'-'Tu_al.'l:' (ERTRACTIComsstAddre s sFile Shas Feald ComsctAddeessFile. | AddnagaFie = "CAT) |:|
s L EC
Mep Sowca Filas
= iy meil [addressFie (AddressFie Datn) ||| [t MeiingList (MaiingFile Date)
i AddressTolebelF B sddrasaFie Outpin Rula
3 i Calformmlabels Sl Comach (&) =] Mailinglisi
+ @ ContaciToLebe| SlLasr Hame Figlid &) Label () =" anlaciTaLak |
44 @ UnigueCanacss SlrAcidla Mara Fiald [01)
_|F Fat Manme Flnla
Bl Camparny Field
2 St Fazld
2l by Freid
2l Simbe Fiedd
2l TpCoda Fiald
ol AaraaCode Fedid
‘ »
i 4 11
Flaady [M

To Build the Map

1 From the Map menu, choose Build.

f’%@
Or, click the Build Tool.

If you have errors, see Chapter 11 — Building a Map, in the Map Editor Reference Guide.

To Run the Map

1 From the Map menu, choose Run.

-

The Execution Engine dialog appears. After Mercator finishes running the map, you get the
message, “Map completed successfully.” If you do not get this message, see Chapter 15 —
Debugging a Map, in the Map Editor Reference Guide.

Or, click the Run Tool.

Design Guide
94

Chapter 4 - Using the EXTRACT Function

To View the Results

1 From the Map menu, choose Run Results.

&

The input file, address.txt, and the output file, ca.txt, each are displayed in a separate window. Each
label that was generated has the value “CA” for the State Field.

Or, select the View run results tool.

=ContactToLabel[EXTRACT[Contact:AddressFile,State Field:.:AddressFile = "CA"])

R

SN B [nput #1 ADDRESS. TXT ; - O] x]
#1 pdams,James.P.ABC Co..29 Frankford Rd Bloomlngtl_l gFile Data)

Hlllev Harla B.Conrad Corp.12
=lignith,. Fred.fA.Sand Inc..Beach Stru . Output #1 ca_txt =] ES Llc
LEUEldln Beth.M.Any Co.,697 Berry Mayria B Hiller
Jones.l"lary.,HcCornlck Enterprise Conrad Corp —I
Martin,Mary,.Hooks and Hangers.11234 Snith St |
Edams . James P.ABC Co..29 Frankfo Buffale Grouve.CA 6DASY Ial:iTDLI
Ziller.Maria,B,Brackman’s Inc.12
Browning.Fred.A.Sand Inc..Beach !
Beldin,Beth,M.Androneda Co.,697 ﬂzggrﬂ‘;gﬁsmmnm
Jones.Jack.,Channel 7 Hews.924@ | 1299 Lincoln Drive onlv th
Martin, Chip, .Johnson Systems +12/Mapyland,.CA 19444 nly the
Adams . James P, ABC Co..2% Frankf: “CA”
McDonald.Maria,B,.Duke Paints, 123 Maria B Ziller
Smith.Fred.A. Sand Inc..Beach St Brackman’s Inc Contacts
Ueldln Beth.M.Any Co.,697 Berry 11934 8nith St

Buffalo Grove.CA 6BBBY were

‘ Jack Jones mapped
Channel 7 News
2248 Lincoln Drive

4] yl Maryland,.Ch 19444 I :I

To Save the Source File
Finally, you want to save your work.

1 From the File menu, choose Save.

Or, select the Save tool.

Case 2 — Extracting Contacts that are Preferred

Suppose you want to generate labels only for the preferred customers in the address file.

Design Guide
95

Chapter 4 - Using the EXTRACT Function

How to Do It

Generate a lookup file containing the names of preferred customers. You can use the lookup file to
determine whether a contact is a preferred customer and map only these.

Define the lookup file in a type tree.

In the Map Editor, make a copy of the AddressToLabelFile map and use the EXTRACT function in the
rule for Label.

Files Used in Case 2

The following table lists the input files you use, and the files you modify and create, as you work
through Case 2.

File Use

address.txt Use as an input data file. It is located in your
mercator\examples directory (folder in Windows 3.1).

lookup.txt You create this file to use as an input data file.

address.mtt Use this type tree that defines the address.txt input data.
It was created in Chapter 1 and modified in Chapter 2.

prefrd.mtt You create this type tree to define the lookup file.

mail.mms You modify this map source file, which was created in
Chapter 1, and then modified in Chapter 2 and in Case 1
of Chapter 4. (Working through the example in chapter 3
is not required.)

pref.txt This output file is created by running the completed map.

Design Guide
96

Chapter 4 - Using the EXTRACT Function

Using the Type Editor

You need to create the type tree for the following lookup file of preferred customers: If you want to
work through this example, you also need to create the lookup file, containing these three records:

ABC Co., 35abc, 970322
Sand | nc., 529heu, 970912
Andr oneda Co., 577ecc, 960506

Implied
Define the lookup file in a type tree:
|# ' PreferredFile Data _ O} =]
@ Data Campanent Rule
- @ Custorner =1 |Custorner () |
- @ Field
e ::E’]Dmpaw Delimited with /A and
: with a CR/LF
- @ Purchaselatg terminator
- @ PreferredFile |® CustomerData _ BWl=lkd FET p—
Component Rule
| |Company Field
] |ID Field
1 |PurchaseDate Field

Create the Lookup Data

Create the following lookup data in a file:

ABC Co./\ 35abc/\ 970322
Sand I nc./\529heu/\ 970912
Androneda Co./\577ecc/\ 960506

One way to create the data is simply type it in a word processor, and save the file as text. Another way
to create the data is to create a map that has one output card—whose type is PreferredFile—and no input
cards. Index three occurrences of Customer. In each map rule for each field, hard-code the field values.
For example, the rule on the Company of the first Customer would be = “ABC Co.”. After you enter
rules for the three Customers, build and run the map to generate the lookup file. In this example, the

lookup file is called lookup.txt. For more information on using a map to generate data, see the Map
Editor Reference Guide.

Design Guide
97

Chapter 4 - Using the EXTRACT Function

Using the Map Editor

4

5

Open the file mail.mms.

Create a map called Preferred by copying AddressTolLabelFile.
Edit the output card to change the file name to pref.txt.

Add a new input card for the lookup file.

Change the rule to use EXTRACT.

In the executable map named Preferred, there are two inputs—the address file and the lookup file. The
rule on the output Label calls the functional map ContactToLabel. The input argument to this map uses
the EXTRACT function to extract the Contacts, and the OR function to test if the Company Field
appears in the LookupFile.

Here is the map rule on Label:

= Cont act ToLabel (EXTRACT (Contact: ContactFil e,
OR (Conmpany Field:.:ContactFile = Conpany Field:.:LookupFile))

Here is the map:

L Harcalor Map Fadilm - G- vmeecsber P xsamplneurail mme Prefesind
| Ede Wow Moo [owd Puee Tock Wirekow Help
M2 S ¥ne Bl es 5 S 0
j =CanaciTolabel | EXTRACT | Contact AddresaFie 2
| CF [Company Feabd LoskupFie = Company: Feall addeaasFil i) I
..-Ji .I_ Fraem H[.I -1 T.} HF:.
Mep Sourca Filae e
= iy el #2 LoakupFile [FrefesedFile Dsts) |#1 MeiingList faiingFile Cata]
+ @ addrozzTobaling|§] [AddressFile (AddressFile Dala) Culput Rule
i @ ContaciTaLebal FHpddraesFi =] Mailinglisi
- & T & Labsl () =ConiaciTolabal | EX
X
Lt . _—
Fiady [wam
Design Guide

98

Chapter 4 - Using the EXTRACT Function

In the output, the only labels created are those for the companies that were present in the lookup file—

ABC Co., Sand Inc., and Andromeda Co.

Mencalon Bap Ed#se - T4

zarplerimail mma Peefemaid

Fie Dot Yew Map [wd fules Took wiedes Help

MEH &Pk Bated N LT R

OF [Campamy Figld LabkopFle = Ciom parsys Fesddd_AddnaiFila)]

qvfﬁfﬂbﬂTﬂLﬂ.ﬂﬂliD{'MTl Contect & doress File
Il

3 | _—m
M'HC' Sounca Fles ! bepuifld o Eugh iy imim calai o xample .Fm
= [l i 7L 0 el babes LB s
- Sand Ing 61 Fheg- 970012
s @ AddressToMaing| | BUASHH| 357 cmmds o 67 Face 960506
B @ ContaciToLabal :ﬂEEH
1] .F‘I‘E"E'FHI:I TT W WA T -Enli=h
7 CPLOABD Col 29 Framkiord = Jamms F. Adamx
Hillsr, Earis. B Conred Corp. 1234 Sw AEC Co
Swith. .. Sand Inc. . Bessch Stres 29 Fraskiord Rd
Valdin, Bsth. H. dmy Co 697 Berry Bo Eloomiegton,. IL GOSZS
Jonms Hary. HeCorsick Entesprises
Hartin,. Bary. Hooks eaxd Hangers, 173 Fred A SELbh
Edans , Jawex P ABC Co. .29 Frankiord Sand [mo
Zillas Macia B Bracksan'z Inc, 1234 Beach Shrest
Browning.Fred A Sand Inc. EBaach St Prsws Besschk. FL 30321
Beldin,Bath M. Asdecasda Co. , £97 Ba .
Jones, Jack, Chaspsl T Hews, 3240 Li Jamas F. Edsus
Haxtin, Chip, . Jokosos Systess. 123 WEC Lo :
hdams . Jawss, PLABC Co. .29 Framkiord 29 Fraskfcord Rd
HocDomald, Haris, B [ukes Fainis, 1234 ° Eloomizgtom, IL BOSES
SElth.Fred. & Sapd oo, Besch Strss
Valdin, B=th.H. Any Co. . 697 Berry Bo Fred & Erownicg
Jonss, Hary. Hsxy's. TFF Lincoln Dri Sasd Te=
mrtin Hsro Peter Pan Coen 120 - Besch Sirest
KIS il | 'i I e Fisws Bsack FL 33321
52 List FII:IMH_MI 1i =
Fasiy

—
[[WuW

Ny
N

Design Guide
99

Chapter 5 - Testing the Existence of Data

Chapter 5 - Testing the Existence of
Data

This example uses the IF and PRESENT functions.

What You Want to Do

Generate an address file containing only those contacts with a middle name.

How to Do It

The input and output data have already been defined in Chapter 4. The definition of the input file is the
same as that for the output file.

In the map, you use the IF and PRESENT functions, to check the presence of the Middle Name Field.

Files Used in this Example

The following table lists the files used in this example.

File Use

address.txt Use this file as the input data file. It is in your
mercator\examples directory.

address.mtt This is the type tree file last used in Chapter 4,
Case 2.

mail.mms You modify this map source file, which was
last used in Chapter 4.

middle.txt This output file is created by running the map.

Using the Map Editor

You need only one map. The input is ContactFile, and the output is ContactFile.

On the output Contact(s), you use the following rule:

Design Guide
100

Chapter 5 - Testing the Existence of Data

=I F (PRESENT (M ddle Name Field:.:Input), Contact:I|nput, NONE)

The map looks like this:

Mmcalm Hap Edilo - C:umeicalnnAF semplac i mal mma Pisleoned

e ot wew M Lo Bues Tod widow Hep |
|a@m | & e nazied Y £2° F

_ﬂ =ConieciTalabel [EXTRACT | ContmctAddressFile d
I O Companm: Feeld | LookugFile = Comparn: Fieli AddeasFik)] -1

=)
ﬁ.'dm: Source Files P! Inputl? Lookupkde C: epoatorE xamples.__ M [n] B4
- rmal #2L | ABC Ca. ~35abe~3T0322
-‘ - Sazd Ine .52k ~3709312 ingFila Dets)
7 @ Addresi Tokailing) Addl| 3ndreasds Ca. 57 fece-BEIE0E Fluk
7 @ ConteciTalabal g
= 'F'I'\E'lrllbd 1 Al T=1 | ——— Wi e i R
B sk Addiessk e % v b HIIIE] 1 Dutputi] Haiknglist C
dams Janss P ABC Co. 29 Frankiocrd & -
Millsy Haria, B, Conrad Corp, 1234 Sa AEC Co
Swith,Fred, & Sand Inc. Bsach Stres &9 Frankford Rd
Teldian Beth M Any Co 6597 Barry B Bloomington. IL 60516
Jenes Hary . HeCaraisk Erlerpsises
Mariin Hary, Heaks and Eangass. 123 Fremd &. Smith
Edams, Janas P ABC Cs. 29 Frankissd Sard]I:lt
Tillar Haria E Brackman'z Inc 1334 Bemch Strest
Hrowniog, Fred h Sand Inc. Baach St Fiemo Besch. FL 12321
Baldin, Esth M Androssds Co 6597 Ba
Jonme, Jack . Channm] 7 Hews, 9240 La Jam=s F. Edaws
Hartin, Chip. Johnson Systess 123 ARBEC Cio
ddame, Japme, P ABD Co 29 Frankfood 29 Frankford RBd
H=lonald. Msris . 0. [Duks Feaint=, 1234 ° Elosaington, [L 0635
Swith. Fred. . Sand Inc. Besch Stres
Valdin. Beth. H. hny Co 697 Berry Ro Frad &, Brownled —
Jones. Hary. Hary's. 77F Lincolm Drio Sazd Inc
'Urrrr1n HmTo ri-n-r Pan Corm 120 Bad=h SinEt
l|| il 1 Fismo Bes=h_ FL 33321 —
“ause [*2compostan] |7 —— ; ﬂ—'
Fiaasky Ly

The resulting output file contains only those contacts with a middle name. For example, Mary Jones was
not mapped to the output.

Design Guide
101

Chapter 5 - Testing the Existence of Data

</ Mercator Map Editor - C:Amercator\Examplezimail. mmz PeopleWithMiddleM ames

” B Bl s e b Bilos Tes Wihse BEh

AR e A
:":Il =IF (PRESENT [Middle Name Field..AddressFile), ContactAddressFile, NONE) |-
==l E! Inputiil AddressFile - C:imercatorAExampleshaddress. txt O] x| _ O] =]
FEMap source Files Adams.Janes. P, AEC Co.. 29 Frankford Rd.Eloomington, IL. 6
EH-[E mail Hiller Maria B, Conrad Corp,1234 Smith St Buffalo Grove L
--QAddressTuMailin Smith.Fred.&.5and Inc..Beach Street.Pismo Beach.FL. 333 ol-cerEesls Dai
S1H| veldin. Beth.M. &ny Co..697 Berry Rosd. Highland Park. IL. Rule
-@) CortactToLabel Jones, Hary, . McCormick Enterprises, 777 Lincoln Drive, Ha:
& PeoplewithMiddle Hartin, Hary..Hooks and Hangers, 123 Neverland Awe Sky T. |
9 Peop Edans.James.P,ABC Co..29 Frankford Rd.Bloomington,IL. & FIF (PRESENT [
Ziller . Maria.B Brackman's Tne 1234 Smith S5t Buffalo Gr
grﬂr}mg.fieﬁ. Et: Outputit] AddressesWithMiddleNameFile - C:\mercator\Exampl... =] B3
Tonee Tack . Ciu[Tadems. Janes P_ABC Co_. 29 Frankford Rd. Bloomington IL. 6 |a
Martin Chiﬁ' 7| Hiller Maria B, Conrad Corp.1234 Smith St Buffalo Grove
idans James B, | Smith Fred, & Sand Inc. . Beach Street, Pismo Beach FL, 333
MoDonald Maria| ¥eldin. Beth M. Any Co. 697 Berry Rosad.Highland Park, IL.
Smith Fréd A5 Edam=, Janes P, ABC Co. 29 Frankford REd,Bloomington, IL, 6
Veldin Beth .| Ziller Maria B, Brackman's Inc, 1234 Smith St Buffalo Gr
Jones ﬁarv ‘Ma| Browning. Fred. 4. Sand Inc..Beach Street. Pismo Beach.FL.
- - """~ Beldin,Beth.Hd. Andromeda Co. . 697 Berry Road.Highland Pa
4 Adam=, Janes P, ABC Co. .29 Frankford Rd,Bloomington, IL, 6
McDonald, Maria, B, Duke Paints, 1234 Smith 5t Buffalo Gro
Smith,Fred, & Sand Inc. Beach Street, Pismo Beach, FL, 333
Veldin,Beth M, Anvy Co., 697 Berry Road,Highland Parl, IT,
Edams, James, P, ABC Co., 29 Frankford REd,Bloomington, IL, &
Ziller Maria. B . I1L's.1234 Smith St.Buffalo Growe,Ch. &0
Smith,Fred, & Sand Inc. Beach Street, Pismo Beach, FL, 333
_J Beldin,Beth .M, Any Co. , 697 Berrv Road.Highland Parl, IL,
4| I »

= M2 List I": Composition]

1 Card]

i

Adams, James, P, ABC Co. .29 Frankford Rd,BlDDmingtDn,II;j:J
L

Feady

[NoW[

Design Guide
102

Chapter 6- Using Cross-Referenced Data

Chapter 6- Using Cross-Referenced
Data

To cross-reference data from a file, and incorporate it into your output, you can use one of the following
Mercator functions:

¢ LOOKUP - to get an object from a list that is not organized in any particular order
¢ SEARCHDOWN - to get an object from a list that is in descending order

¢ SEARCHUP - to get an object from a list that is in ascending order
+

CHOOSE - to get an object at a certain position in a series

This chapter explains how to decide which function to use when you want to cross-reference data, and
how to use the function. It provides a map example using each of these functions.

The examples also illustrate using the Functional Map Wizard to create a functional map.

When to Use LOOKUP, SEARCHDOWN, and SEARCHUP

Following are three different examples, each illustrating when to use one of these functions: LOOKUP,
SEARCHDOWN, and SEARCHUP.

Case 1 - Using LOOKUP for Unordered Cross-Reference
Data

The first example uses cross-reference data that is not in any particular sequence.

You have a file of unigue contacts. You want to generate a file that contains records consisting of the
name of each of your customer contacts, their company, and their geographical region.

How to Do It

The geographical region information is not in the input file, so you need another file, which contains
this information. Because you do not have this cross-reference file, you create it. You define the lookup
file and the output file in a type tree.

Then you create a map that has a single output card, and enter the data values you want. The cross-
reference file contains zip codes and their corresponding geographical region.

Design Guide
103

Chapter 6- Using Cross-Referenced Data

Next, you create a map that uses the lookup file and the address file as inputs, and generates the output
file you want.

Files Used in Case 1

The following table lists the input files to use, and the files to modify and create, in the first example in
this chapter.

File Use

unique.txt Use as an input data file. This file is created by running
the map created in Chapter 3.

region.txt This output file is created by running the first map. This
file is then used as an input data file to another map. The
lookup data, zip codes, are not in any order.

customer.mtt You create this type tree file to define the lookup file and
the output file.

customer.mms You create this map source file.

report.txt This output file is generated by running the second map
created in this example.

Using the Type Editor

Create a type tree that defines the following data. Define each record as infix delimited with two spaces:

60525 North
60089 \West
33321 South
60012 North
19444 \\est

44444 Sout h

Design Guide
104

Chapter 6- Using Cross-Referenced Data

F. TypeTieel _ O] x|
@ Data % Record Data _ O] =]

= @ Field ZipCode Field :
- @ Comparny 4] o
: ;Dnt.act Component Rule
@ meqian 2 [Region Field
e @ [P 2
y 1| ZipCode Field

- i@ Record

- @ RegionFile

-~ @ Report

- @ SalesRecord
* ReqgionFile Data [_ (O] x|

K F‘

Component Rule
| |Fecord (=)

Now, define the output file. The output file is made up of Sales Records. Each record contains the
contact person, the company name, and the region.

Design Guide
105

Chapter 6- Using Cross-Referenced Data

P Cosomorhit MR

@ Data % RBeport Data 0] x|

= @ Field .. A

- @ Company
- @ Contact _Ij
- @ Region] ‘
@ ZipCode Component Rule

- @ Record || SalesRecord (5]

- @ RegionFile
- @ Report

- @ [RalesFecord

#® SalezsRecord Data M= E3
Fegion Field AI

" o

Compaonent Fule
| |Contact Field
| Caompany Field
1| Region Field

Using the LOOKUP Function

Create a map that generates the RegionFile data:

60525 North
60089 \West
33321 South
60012 North
19444 \\est

44444 South

Do not create any input cards. Create one output card, whose type is RegionFile. Index six records.
Then, simply enter text values for the fields. For more information on indexing an output, see Chapter 5
- Formulating Map Rules in the Map Editor Reference Guide.

Design Guide
106

Chapter 6- Using Cross-Referenced Data

= Meicater Map Edasr 1 \merc aloVE pamplerViuwitomo swpa b sk ofl eguonf ke
B B Yew Hae [add Auker Toch Miecks Help
B E & e e d | | 2E ln?l
q"[-[IEEE-' -]
|
ey — "
p- 4 | Faisn M=IE T T =]
.‘ Map Sowrce Files
=iy Customer -
1
5 i MakaRecionFis e HWHFHF:T&:HEDMF .
41 i Maks Sales Fecon Er DhuipuiB1 Hegent il mMEE - Pru:--Fn:eln gl B8
@ RegonRepan e052E Horkh m (ool
2 ir---_.-..r-.-,.ml.x ET;:I:I g;-:rh - - |-"'I -I-I'qd —
= i@ FegonFepar_Ls 21 ak Ipipin Fie - .
@ Fegerfiepn. igg;f u;:" H Regon Fiehd =TMorh”
44444 '.rl:i':th =l Regard[7]
Bl IpCode Field =00
B8 Rigion Fiskd ="Wasi"
Bl Recard[3]
o Lpiipedn Field =141
2 Regios Fiekl ="Tnulh"
=l Recordjd]
B IpCoda Fisld =EDZT T
&l Region Fiski "ok
=l Aecard}s]
o TgCieda Figld Ea TRl L
i Ll 2l Fegion Field =West” g
S [*1Comgasiton | 1 - =
Fiamp N

Now, create a map that uses the unique contact file and the region lookup file as inputs. In the map rule
for the output record, use the LOOKUP function. The LOOKUP function is the appropriate cross-
reference function to use, because the lookup file is not ordered in any specific way.

In the executable map, the rule on SalesRecord(s) references the functional map MapSalesRecord. The
two arguments are Contact, and the record whose ZipCode matches the ZipCode of the Contact. The
LOOKUP function is used.

The LOOKUP function has two arguments. The first argument is the series of objects, belonging to one
type, to be searched. The second argument is the condition you want to base the search on. LOOKUP
sequentially searches objects in the series.

It returns the first object in the series where any corresponding evaluation of the condition is TRUE. The
syntax of LOOKUP is:

LOOKUP (Series you want to lookup, Condition)

The rule on the SalesRecord output is:

=MakeSal esRecord (Contact: ContactFil e,
LOOKUP (Record: Regi onLookupFi | e,
Zi pCode Fi el d:.: Regi onLookupFile = Zi pCode Field:.:ContactFile))

Here is the executable map:

Design Guide
107

Chapter 6- Using Cross-Referenced Data

w' Morcalm Hap Edber - C:immcelod\E ssmplecWCucioms. mma Regonf epat
Fie [t Yies Mao Ced fubes Took Mieckes Help
Hegd 8 b 3R O " 2

LODELR [Fecond FegoslgokupFils,

: shinkoSakesFiocond | ContectAddness Fik _ﬂ
ZipCode Field: :FegoalockupFike = 2pCode Fiald. AddmssFile])

=l

[26 GourcaFiss

- I‘E:-"T_l:':':l?” f— #2 BegonlockupFike (RegionFie Dats) [#% RegurFep ont (Repan Date)
T AL Apnre
@ MokoSclesFiacon: 1 AsickmesFile (AddressFie Dats) Dutput Fue
} ":EEII.ITIFIE[‘.-'_IH 1 illh“”""i"Fld =l RagnnPepod
+ & FagionFepan_Lk =l ZalesRecomd [5] =fakeSaksh

4 i FlegionFepar_Ls

1 Te M= iy

4] | 5

Tgumt [*:cemeoston]| |, | »
Fusadp LT

Using the Functional Map Wizard

Now, use the Functional Map Wizard to create the functional map MakeSalesRecord.

To use the Functional Map Wizard

1 Select the rule for which you want to generate the functional map. In this case, it is the rule
in the executable map:

=MakeSal esRecord (Contact: ContactFil e,
LOOKUP (Record: Regi onLookupFi | e,
Zi pCode Field:.: Regi onLookupFile = Zi pCode Field:.:ContactFile))

2 From the Rules menu, choose Functional Map Wizard.

o

Or click the Functional Map Wizard tool.
The Functional Map Wizard dialog is displayed.

3 Inthe Functional Map Wizard dialog, name the first input card “Contact”, the second input
card “LookupRecord”, and the output card “SalesRecord”.

Design Guide
108

Chapter 6- Using Cross-Referenced Data

4 Click the Create button.
5 Click the Done button.
The Functional Map Wizard will create the functional map MakeSalesRecord.

In MakeSalesRecord, Contact field is created by concatenating the First and Last Name fields from the
input. The Company field is simply mapped from the Company field in the input. The Region from the
lookup record is mapped to the output Region.

w' Moncalm Hap Edier - C:immceliodE semplecVCucioms. mma Bake® alnsRiecod
i Lot Yiew Map Cod fules Tooks Wiedos Help
Mea 8 vhE Bl ee GYW S @)
-H-F'cg-:r Fiald LockupPieooed H
= =]
[Hep Sourca Filgs S Slinl 18 308 A=
) m'l:;:r:-':-:lmf:‘:?v sinFis ft Lanesd (Coniac: Liets) |#1 SalesFecor [SalssRecond Debe)
+ ﬂh—-m:dl‘:ﬂ-'n:-:r: I d (Record Cus) Ol put Fuls
41 @ FlegionFepan d s =h ;Al-ﬂﬂlﬁ_nul
@ RagionRepan_Us B dipCode Field B Comact Frald =Firsl Mare F
! ‘ﬁnl.:.lunl:l-:p:lrl_LI: B Fegaon Fiald 2l Tompsny Fisld s ampany Fsl
. 2 Fagan Field =Ragan Fild
41 | | 4 z
Tyt [* 5 Congostion al I &
Fiady T

Each record in the output file contains the Contact and the Region - information you mapped from both
the address file and the region lookup file.

Design Guide
109

Chapter 6- Using Cross-Referenced Data

=MakeSalesHecord [Contact:AddressFile,
LOOKUP [Record:RegionLookupFile,
ZipCode Field:.:RegionLookupFile = ZipCode Field:.:AddressFile]]

| T & input #1 REGION.TXT MmIES|3] | To (ol
68525 HNorth 3
60887 lest:
The 33321 Sout R A W _[ofx]|port Data)
lookup 60012 Hortpndams,James,P,ABC Co..29 Frankford Rd. .
file 19444 WestMiller.Maria,B,Conrad Corp,1234 Smith Rule
44444 SoutSnith.Fred,.f.Sand Inc..Beach Street Pi |
Ueldin,.Beth, Mg = s ————
The Jﬁneé':"af.y”” & Dutput #1 report.txt =] E3
address .. Martin . Mary, . James Adams/~/~ABC Co..~-North -
fil Edams .James,.FMaria Miller/ /Conrad Corp/ - West
le Ziller.Maria.Fred Smith/~~8and Inc./~~South

Bruwr_ling,FredBeth Veldins~#Any Co.//sNorth
Beldin.Beth.MMary Jones.~ McCormick Enterprises.~
<| | Mary Martin./~ - Hooksz and Hangers.~ - S50

The James Edams.~/~-ABC GCo./7/North
Maria Ziller~~~Brackman’s Inc/~-Uest
output Fred Brouning-~s8and Inc.- /- South
il Beth Beldin///Andromeda Co./~/North _
e Tarlk Toanacsssfhannal P Ko 22 oot
2 Cards 1| | ko

Case 2 - Using the SEARCHDOWN Function

The SEARCHDOWN function is appropriate to use when the values in the cross-reference file are in
descending order. Using the SEARCHDOWN function, instead of the LOOKUP function, optimizes the
execution.

The SEARCHDOWN function searches an ordered series of objects (argument #2), using a binary
search, by comparing members of the series to another object (argument #3). The ordered series is in
descending order. The result (argument #1) is an object related to the ordered series.

The syntax of the SEARCHDOWN function is:

SEARCHDOMN (Obj ect you want to get, Ordered series to search,
bj ect to conpare)

Note For SEARCHDOWN to work properly, the second argument must be in descending order.

Files Used in Case 2

The following table lists the input files you use, and the files you modify and create, in the first example
in this chapter.

Design Guide
110

Chapter 6- Using Cross-Referenced Data

File Use

unique.txt Use as an input data file. This file is created by running the
map created in Chapter 3.

region3.txt Input file used for lookup. The lookup data - zip codes - are
in descending order.

customer.mtt This type tree file defines the lookup file and the output
file. It is the same type tree used in Case 1.

customer.mms This is a continuation of the map source file created in Case
1.

report.txt This output file is created by running the map.

Using the Map Editor

Suppose the Region Lookup file is ordered by the ZipCode Field. The ZipCodes are in descending
order. Create a map that generates the following data:

60525 North
60089 \West
60012 North

44444 Sout h
33321 South
19444 \W\est

Now, the second argument to the map MakeSalesRecord is the SEARCHDOWN function:
=MakeSal esRecord (Contact: ContactFil e,
SEARCHDOMN (Recor d: Regi onLookupFi | e,
Zi pCode Fi el d:.: Regi onLookupFile, Z pCode Field:.:ContactFile))

The results of running the map show the output with each customer Contact and Region:

Design Guide
111

Chapter 6- Using Cross-Referenced Data

L vmemcstotE zempler’VCuciome. mma Fegonf epart
B B Vi M Coed Bubes Took e ek
MEH & Dk By a8 Y

* £ | o |

ﬂ-lﬂ:lh.nﬂ:h:l'—:m::nc [Coamtmct Ad diness File

=l

':‘ Map Sourca Fles
= [l Customer
i Mk e Gl P
B bk Sl g Fisenioe
i ‘I:lgqll;lnﬁepjrl
7 @ RagionRepan_Ls
@ FegionRepan_Lis

I Beguit B Bsdidsrnal
ddans Janas P

13444
La444

Fast

Soutk Ve ldin. Beth, K
Jones Hexv. .l
Eartin. Hary.
Edumm Jamss .
Liller Haris
Brosming . Fres
Beldim. Beth.
Janes . Jack

Bartan.Chap
Eelonsld, Hax
Janex Hary. .|
Eartin. Hary

Tiller Haria

Baldis, Beth, !

4
1
e

=[=1E

Miller Haria B Cearved Cosp, 1234 Saith St Baffala Gra
Saitk Fxed &, Sand Iac

T e

| L7 o FEea s e R e Miara’
e C meree al i L E wampli hummjue. Bl

AEC C=

M=

29 Frankfazd Rd Blecmingtan, [T &

EBeach Strest Flaws Bsack FL 2
Any o, B97 Berry Rosd Highland Park, I

N Dtpudl R Cimercain\Ex M= E

Janme AcssmscooaBL Lo <7 Marth
Haria Hiller-<+Conrad Coorps~ < Baxt
Frmd Smith #+Sand Inc.- +#Socuth
Bathk Veldin < Aoy Co.- - Hazth
Hary Jooas- " HeCarmick Esterpelses- T
Haxy Hartins< Hooks and Banjers- < Soutl
James Edanss<4BC Co. - Rarth

Haxyia Ziller < -Brachkan’s IRCS - Test
Fred Eyowniegs<Sand Ino <--Soutk

Beilh Peldin~ Aapdromesds Lo, <A SHorth
Jack Jomsssoo hsnnesl F Heescooodesk

|‘I""- Tack | Chip Hertin~<sJohnson Systems <~ South
Haris Hclonald<~<Iuks Paints s Umst
Hary Jomes < Hary' s Wemst =
Hary Hartin - Pmtar Pan Corp - +Southk
Harza Zillexs LLL' = - Hmxt
Bathk EBaldin - ~dny Co < Harth -

4 3 mrl Jremes s Hare e Ak -
4] | . i : q |]y
5 Lisd £ g elion 1] | 0

Fesady [| MM

Case 3 - Using the SEARCHUP Function

Use the SEARCHUP function when the cross-reference file is in ascending order.

The SEARCHUP function searches an ordered series of objects (argument #2), using a binary search, by
comparing members of the series to another object (argument #3). The ordered series is in ascending
order. The result (argument #1) is an object related to the ordered series.

The syntax of the SEARCHUP function is:

SEARCHUP (Qbj ect you want to get,
bj ect to conpare)

Ordered series to search,

Note For SEARCHUP to work properly, the second argument must be in ascending order.

Files Used in Case 3

The following table lists the input files to use, and the files to modify and create, in the first example in
this chapter.

Design Guide
112

Chapter 6- Using Cross-Referenced Data

File Use

unique.txt Use as an input data file. This file is created by running the
map created in Chapter 3.

region9.txt You create this input file. The lookup data - zip codes - are
in ascending order.

customer.mtt This type tree file defines the lookup file and the output
file. It is the same type tree used in Cases 1 and 2.

customer.mms This is a continuation of the map source file created in Case
1.

report.txt This output file is created by running the map.

Using the Map Editor

Suppose the Region Lookup file is ordered by the ZipCode Field. The ZipCodes are in ascending order.
Create a map that generates the following data:

19444 \West
33321 South
44444 Sout h

60012 North
60089 \West
60525 North

The second argument to the map MakeSalesRecord is the SEARCHUP function.
=MakeSal esRecord (Contact: ContactFil e,
SEARCHUP (Recor d: Regi onLookupFi | e,
Zi pCode Fi el d:.: Regi onLookupFile, Z pCode Field:.:ContactFile))

When you run the map and view the results, you see:

Design Guide
113

Chapter 6- Using Cross-Referenced Data

Morcalm Hap Edier - C:immcalod\E xenplecVDucions. mmz Regonfepat_LzingSEARCHUP

Fie [t Yies Mao Ced fubes Took Mieckes Help
I
(@ n & vk Bartes WY |Le 0|

ﬂ-lﬂ:lhuﬂ:lhsl'—:m::nr.' [Coamtmct Ad diness File H
T R . 51

Mep Sounca Files

= [Custome ! Inpuiti? Regival ookupfile... PIT=1 ET {1 Fuesgacanp oot {Fepn Dista)
i i e G Pl ig}!;' g;ﬂ':l Chylput Ruls
s R 1 uth
e ::m_:n—:h:_a. 14444 South =] -i'qqnnh'-:pn*l | |
4 egionFEpa AR u : - 2 i
Y ingasi8] Addissslde L Smyend 5l o Y L psimple g aniagipe -I -Hm MakeSaksh

- @ FagionRepar_Ls
& @ FegionFepan_Lis

bdnms Jam=s F_AEC OO Jo = i T
Miller Hearis. B Conrsmd o QERUTENE SRR SRS L L imercalmsE zamplea e post 1=

Smith Fred.a Sand Inc. epey hosem s hi. Lo, Herth
Feldan.Beth. B Any Lo U yeris Willers o Conred Corp+~Hmxt
Janes.Hary. . MoCormick Bl Fred Saiths . Sasd Ioc.ssScuth

Mertin Hary. Hocks snd | Bty Yeldine ' hay Co. s Herth

f-hl':x ';“" Fﬁ*m "; N Hary Joswmss < HoCarabick Enterpelsss- < Basl
;1 - "'F:".) E:E:I.-;r Hary Hartin<-Hodoks and Hanpaes- ' <South
PO LA - X FEE ne STl Jamss Edamssc-ABC Co. o~ Hoxih
Jafl""".al'j_h E"""—“T',": Haria Ziller<<-Brackman’s Lec - Past
CHELIE. S rans=s Frisd Erovnizg---Sand Ino. <~ -South

Mastin, Chip, Johessh Sil path Bmldinsscdndrossds Go. < Hookh
WD ld, Hue ""LB Duke H juck Jooems- oChernml 7 Bewso s Hest

‘]‘::E,’ Hary. Mary"s. 777 Chip Hartipss<Johnsom Srstems <~ South
H’a""""m“"' Pater Paf | faygs Molonsld< s Duks Painte s Jest
:.:l.ll.E'I..H.-El.lﬁ B :LLL_S']" Hary Jomess s Hary ' s Umst

Beldin Beth B Ay L0 EHl Yary Hartin . Pmtsr Fsn Corp A Sauth

ill'-nH imck Maruoe AT jeris ZillersseLLL s Rant

Eath Baldin - h=y Co.<**Hoxrth '
|1 | | LI Jack Joccams s Hary'= - Umzt a
- -] Vary Hartin<- - -Pateyr Pan Corp. - South -...J
5 Lisd £ g elion 1]] LI
Fesdy |_Iﬁ [

Case 4 - Using the CHOOSE Function

Use the CHOOSE function when you want to select an object at a given index in a series.

The CHOOSE function selects an object from a series. The second argument is the index of the object
chosen. The syntax for CHOOSE is:

CHOCSE (Series you want to choose from |Index of the object you
want to choose)

What You Want to Do

Suppose you conduct a raffle. You have a file listing the winners in the raffle. The first person in the file
won first place, the second person won second place, and so on.

Here is the file of winners, in order. Helen is the first prize winner, Florence is second, and so on:

Design Guide
114

Chapter 6- Using Cross-Referenced Data

Hel en

Fl or ence
Kar en

d enn
Betty
Rober t
Toby

You also have a file listing the raffle prizes, and the place a winner must get, to receive the prize.

Here is the prizes file:
Hot tub, 4
Couch, 6
Stereo, 3
Dog bone, 7
House, 1
Set of |uggage, 5
Car, 2

You want to generate a file that notifies each winner of their prize.

You want the output file to look like this:

Congratul ati ons, Sonmebodyl! You have won a PRI ZE X
Congratul ati ons, Sonmebody2! You have won a PRI ZE Y

How to Do It

Define the three files in a type tree - the prize file, the winner file, and the output file.

Create a map that uses the prize and winner files as inputs. Use the CHOOSE function to match a prize
with the appropriate winner.

Files Used in Case 4

The following table lists the input files to use, and the files to modify and create, in this Case 4 example.

File Use

prizes.txt You create this file to use as an input data file.
winners.txt You create this file to use as an input data file.
raffle.mtt You create this type tree file, which defines the prizes file,
the winners file, and the output file.
raffle.mms You create this map source file.
output.txt This output file is created by running the map.
Design Guide

115

Chapter 6- Using Cross-Referenced Data

Using the Type Editor

The type tree looks like this:

? Raffle MTT M [=] EJ * | PrizeFile Data
& Data |Pr|zeRecord (=) j
']

~ @ CongratulationsRecord -
B ‘ F|e|d Cornponert PnzeHecurd Data
- @ Mame [FrizeRecord (3] Place Field :
o Flecd o _»r'
° Pr!ze Component Rule
@ PrizeWon Pz Fied
plgl 1| Place Field
~oi Text? 5
~ @ OulputFil
T Cormponent
- @ PrizeFila "
- @ PrizeFecord) | Winner () —_
% Wi
rerfile izeWon Feld f
< b
] Campanent Rule
Component || Textl Field
20 | CongratulationsRecord (s) 1 |Mame Field
| Text? Field
| PrizeWon Field

Using the Map Editor

In the executable map, the map rule on the output CongratulationsRecord references a functional map,
Congratulate. The two inputs to this map are a prize from the prize file, and the winner whose place in
the raffle matches the place of the prize.

The map rule for CongratulationsRecord is:

= Congratulate (Prize Field:.:PrizesFile,
CHOOSE (W nner:WnnersFile, Place Field:.:PrizesFile))

The executable map is:

Design Guide
116

Chapter 6- Using Cross-Referenced Data

= Meicater Map Edtsn C imerc ol VE pampler ' Aallle. mma E ool alibe:

 ble ES Mdew Moo Cwd Huler Tooh fwecos Heip
E A S YD SR ed 59 P&

: =Congramubste | Prize Frekd PricesFile -]
CHOOSE ['Winnes Figld WinacrsFike , Flans Figld: FPrizesFis]) = I
SN [T M= re e
i Map Eoucs Files
- ‘F‘igll: o wWinnarsla WWinrsst e Dels)] &1 CangeeislaicnsFila (0upuiFile Dais)
- i Cangraiulaiz |1 Eriges Fits [PripaFie Dala) Dutgad Hula
3l @ Exncutnbla =l-nzasl e = CongralulalaniFils
SiFiraReco (& &l CongratulationsRecard (5] [=0wgme |
HFnze Fisid
LHlFacs Feld
Azust [*1comeoson |) 2 : | _,F
— TR

Now, you would create the functional map “Congratulate”. You can do it manually, or use the
Functional Map Wizard.

Using the Functional Map Wizard
1 Select the rule and choose the Functional Map Wizard tool.

2 Name the first input card “Prize”, and the second input card “Winner”.

The Functional Map Wizard creates the map Congratulate:

Design Guide
117

Chapter 6- Using Cross-Referenced Data

Lmoe gl VE pampler'FHallle. mms Congralulsle

= Meicater Map Edis 1T

 ble ES Mdew Moo Cwd Huler Tooh fwecos Heip

na8 & DB $el 2 G99 PF 0|
ﬂ-'l.' ongrehlshons ® -]
=|
SN T Fo M=+ - P
i Map Eoucs Files
= [y Fafis P2 Winnar fevinnes Figld Dais) &1 CangaiulslonsFiacarn (ComopsilsaonF
- EIREEE [Frice [Prire Field Cis) Ouepul Aulka
W @ Faacuinbla Jlﬂ = Congralulataneeiand
B Test! Fied anr:ll
ol Mams Fishd =\Winner +
2 Testd Fisd ="'fgu haw
=Fnza

B Prizavoe Field

s [Fizamsamn] | £E - —
L

Fany

In the functional map Congratulate you enter the text “Congratulations, ” in the Text1 field, and “You
have won a” in the Text2 field. The name of the winner and the prize are mapped from the winner and

the prize in the input.

Design Guide
118

Chapter 6- Using Cross-Referenced Data

.. Mercator Map Editor - C:AMERCATORAEXAMPLESARAFFLE. MM5

File Map Card Bules Edit “iew “Window Help

Maps: |Congratulate ﬂl Iﬁlnl%l Eﬁléliﬂ%a Ejlﬁl
EENRERERIEEE

|="Cnngratu|atiuns, "

i From = [=]

To =]

| #2 Winner [Winner Data]
#1 Prize [Prize Field Data)

#1 CongratulateFile [CongratulationsRecord Data)
Rule

Output

CongratulateFile

LLLLLI

Text1 Field ="Congratulations, ']
Mame Field =Winner + """
Text2 Field =""ou have wona"

PrizeWon Field

=Prize

]]

| 2 Cards 1 Card

| Ready

After entering the map rules for Congratulate, you select the executable map, build the map, and run it.
The results show that each winner was matched with an appropriate prize. Toby, the dog, won the dog
bone:

=Congratulate[Prize Field:.:PrizesFile,
CHOOSE[Winner:WinnersFile, Place Field:.:PrizesFile)

:;:a 1

Hot tuhb, 4 e

C h, & orence - . n

Sggieo, 3 Karen tulationsFile [OutputFile Data)

Dog bhone,. 7 Glenn

House, 1 Betty Dutput Rule

Set of luggage, 5 Rob=x

Car, 2 Y & Output #1 output.tat [_1O]
Congratulations. Glennt? You have won a Hot tub
Congratulations. Robert? You have won a Couch
Congratulations. Karent? You have won a Stereo
Congratulations,. Tohy? You have won a Dog hone
Congratulations. Helent You have won a House
Congratulations. Betty? You have won a Set of luggac
Congratulations. Florence! You have won a Car

2 Cards] |
£ [&
‘ |Ready

See Chapter 7 - Using the Functional Map Wizard in the Map Editor Reference Guide for information
on how the Functional Map Wizard creates the functional map.

Design Guide
119

Chapter 7 - Using Control-Break Logic to Define Data

Chapter 7 - Using Control-Break
Logic to Define Data

Sometimes you have data with physical characteristics - such as delimiters, or the length of a fixed
object - to determine where one data object ends and the next begins. If the data has delimiters or is a
fixed length, you can define these characteristics in the Mercator Type Editor.

Sometimes data is not fixed, or it may not contain delimiters. Other methods are required to define a
break in the data. This chapter contains two examples of using other methods to define a break. The first
example shows how to define a break in the data pattern when the count of a certain object reaches a
specific value. The second example shows how to define a break in the data pattern when the value of a
certain Item changes.

Case 1 - Breaking Data by Counting Objects

Sometimes, you may want to define a specific number of data objects as a single data object.

What You Want to Do

Suppose you need Mercator to recognize each set of four Contacts as a single data object, because you
want to map each set of four to a single Record in your output.

‘ Contact
Contact Company!‘Company I‘ Company I‘ COmpany!
Contact >

‘ Contact I Record

ContactSet
‘ Contact
‘ Contact Company!‘Company I‘ Company !‘ Companyl
‘ Contact >]
‘ Contact l Record

ContactSet

AddressFile CompanyFile
Design Guide

120

Chapter 7 - Using Control-Break Logic to Define Data

Within each record, there are four Company fields. You want to map the Company field of one Contact,
to one of the Company fields in Record.

How to Do It

In the Type Editor, define the address file in terms of ContactSets, and use a component rule on the
Contact component of ContactSet. Define the company file of records.

In the Map Editor, create a map that maps the address file to the company file. Use a functional map to
map a single ContactSet to a single Record.

Files Used in Case 1

The following table lists the input files to use, and the files to modify and create, in this example.
File Use

address.txt Use as an input data file. This file is in your
mercator\examples directory (folder in Windows 95)

address2.mtt This type tree file defines the address file, the company
file, and the output file.

customer.mms This is a continuation of the map source file created in
Chapter 5.

app.txt This output file is created by running the map.

Using the Type Editor

Open the type tree address.mtt and save it as address2.mtt. Add the types CompanyFile, ContactSet, and
Record. Rename the type “ContactFile” to “NewContactFile”. Then define it with a series of
ContactSet(s) as its component.

Design Guide
121

Chapter 7 - Using Control-Break Logic to Define Data

F. Addrezs2 MTT M=l * MewAddieszsFile Data =]

[[@ Data 3:
- @ CompanyFile R -

- g Component Fule
-~ @ ContactSet 1| ContactSet |
& @ Field |
- @ Lahel
- @ MailingFile
& Newacessfie

- @ Record 'I—_[
AL

<]
Component Rule
[Contact (s) COUNT(F) <=4 |

The rule on the Contact(s) component of ContactSet ensures that a ContactSet contains up to four
Contacts.

The component rule is:
COUNT ($) <=4

Mercator recognizes each set of four Contacts as a ContactSet. If the number of Contacts in the file is
not divisible by four, the last Contacts are still considered a ContactSet, because the component rule
allows for the possibility that a set may have less than four.

This diagram illustrates how Mercator behaves as it proceeds through the data:

Design Guide
122

Chapter 7 - Using Control-Break Logic to Define Data

Is COUNT (Contact) <= 47
1<=4?

Yes

Is COUNT (Contact) <=4?
2<=4?

Yes

Is COUNT (Contact) <=4?
3<=47

Yes

Is COUNT (Contact) <= 47
4<=47?

Yes

Is COUNT (Contact) <= 47
5<=47?

No

Must be a new ContactSet

The output type CompanyFile is made up of Record(s). A Record is made up of four Company fields.

Design Guide
123

Chapter 7 - Using Control-Break Logic to Define Data

@ Data 3:
- @ CompanyFile < k
- @ Contact Component Rule
- @ ContactSet _|Fecord (=)
= @ Field
- @ ArealCode
- @ CityStatedip
@ * Record Data M=l E3
- @ Marne =
- @ Phone
- @ State ﬂ _,l_l
- @ Straet Cumpu.nent Fule
- @ ZipCode | |Company Field (4:4)
- @ Label
- @ MailingFile
- @ MewsddressFile
- @ Fecord

Using the Map Editor

You want to map the file of ContactSets to the company file of Records. Within each Record, there are
four Company fields. First, create the executable map CompanyMap.

Design Guide
124

Chapter 7 - Using Control-Break Logic to Define Data

= Meicater Map Edtsn C merc ol VE pamplerWutomes swes Companyll ap

 ble ES Mdew Moo Cwd Huler Tooh fwecos Heip |

BEaR & v RE SRS FY S0 80

-5- Aocomdidep | ContactSetAddressFile | H
sl
l.‘ Map Sownce Files
- [y Customer [ckdenicaFilkas (e cickanisiFika D] 1 ComparnyFile (CompamyFis Dnin)
=i} :Eam:mn;,hlﬂp ElAddrmz=File Ciugasi Ruls
41 Feconidep Sl ContaciSet (5) =l ComparngFile
gferiactid Bl Aecand [3)
BL=st Mamo Fald Bl Compaiy Fisdid d)

EiFisst Blama Fusld

B ndde Hame Fisid [11]
B Carnperny Frakdl

2 St Fianled

Bty Fimld

i B Fiadicd

EidipCade Filid

B senaCode Fiakd -1}

2 P Fiakd 101}

i [*1Cameasian | | L . |Ji|
Fiaar CTRH

A functional map, RecordMap, is used to generate one output Record per ContactSet.

In RecordMap, the Company field of each Contact is mapped to the Company field in the Record.

Design Guide
125

Chapter 7 - Using Control-Break Logic to Define Data

= Weiesod Wag Edmed - T i e plod S E pasmples \Duslomei . mmn F oo 0 ag
Fbs Bt Weew Heop Dol Pries Took Windoss Hsg
MEl| & ¥ B 28 YW SE W

aa

-El-r_'r.mptn Fadidt - Coomim ctSien
=

L i
,‘ ban Souses Files
I Cusiomer A ComlactSet [ConinctSet Deln [Fzcord [Racord Dais) |
£ i Compamstdep ElCosiacSa AT | Rule
= i Facord™iap B oninc 1) =1 Hacard
oL ==i Hame Faeld B Tomgary Fisldd] [=Company Fab] Cin|

Ml First Heme Feld

ol pielid b P Fasdod 0 15
Bl Comperry Fisid
Bl'Sheei Finkd

BTy Fiald

ol S Fiakd

Bl Dpiode Fisi

Bl dreaCode Fiekd (001
MllFhoms Fiakd [01]

P | |'j|’.‘ummnhn| 1] |E|

Raacky Raisg

After you run the map, you see that each Record in the output file is made up of four Company fields
from the input.

& Output #1 app.txt M= E3
ABC Co. Conrad Corp Sand Inc. fAny Co.

Brackman’s Inc
Johnson Systems.
finy Co.

LLL's

Peter Pan Corp.
finy Co.

LLL's

Peter Pan Corp. w7

bl 4

HcCormick Enterprises Hooks and Hangers ABC Co.

Sand Inc. Andromneda Co. Channel 7 News
ABC Co. Duke Paints Sand Inc.
Hary's
Sand Inc.
ABC Co.
Hary's
Sand Inc.
4||

-

ABC Co.
Hary's
Sand Inc.
ABC Co.
Hary's

Peter Pan Corp.
finy Co.

LLL's

Peter Pan Corp.
finy Co.

Case 2 - Breaking Data by a Change in a Data Value

Sometimes, the thing that determines where one object ends and the next begins is a change in the value
of a certain field.

What You Want to Do

Suppose you have a file of purchase orders. Each purchase order (PO) is made up of line item records -
one record per item. The PO number appears at the beginning of each record. Therefore, the PO is a set
of consecutive line item records that have the same PO number. How would you define this kind of data
in the Type Editor?

Design Guide
126

Chapter 7 - Using Control-Break Logic to Define Data

In your data each line item record contains a PO#, Quantity, Item, and Price field. The data looks like

this:
— 12345 500 dr ess 065. 99
PO #1 12345 1000 pant s 032. 50
12345 300 suit 200. 70
PO #2 — 14478 275 pa_nt S 032. 50
14478 500 sui t 200. 70

Suppose you want to generate a file that contains just one field - which gives the count of the POs in the
input file.
How to Do It

Define the file of purchase orders, using a component rule to distinguish one PO from the next. Define
the simple output file.

Create a map that maps the PO file to the simple count file.

Files Used in Case 2

The following table lists the input files to use, and the files to modify and create, in this example.

File Use
cntrl.txt You create this file to use as an input data file.
control.mtt You create this type tree file to define the input data and

the output data.
control.mms You create this map source file.

countpo.txt This output file is created by running the map.

Using the Type Editor

Create a type tree to look something like this:

Design Guide
127

Chapter 7 - Using Control-Break Logic to Define Data

* Fie Data _iBix

@ Data -
- @ #F0s 4 _'I—'
E- @ Field Companent Fule
@ ltem [P0 () |
, @ PO |

@ I:]uantityl | ;

@ PO Component Rule
- @ Record 1 [Recard (s) |

* Record Data Mi=]
Frice Field

<l

=

Component Rule
FPO# Field
Cluantity Field
ltern Field

Price Field

CCCC

Mercator must be able to recognize the PO data object. If you create this tree and analyze it, you get an
error. Mercator tells you that it cannot distinguish one PO from the next.

You can tell the difference between one PO and the next by noticing when the PO number changes. You
can use a component rule to bind together, into a single PO, all the Records that have the same value for
the PO# Field.

Suppose that Mercator is looking at a given record in the data stream. The component rule says that the
PO# of the given record is equal to the PO# in the previous record of that PO. If it is not, Mercator
knows that the given record is part of a different PO.

Use a rule on the Record(s) component of PO. Remember, whenever you see a colon (:) in a rule, that
means component. When used in a component rule, the index value [LAST] refers to the last occurrence
of Record that was found.

The component rule is:
PO# Field: Record = PO# Fi el d: Recor d[LAST]

You can use $ as a shorthand notation for Record, so the component rule looks like the one below.

Design Guide
128

Chapter 7 - Using Control-Break Logic to Define Data

. PD Data =] B3
Component Rule
Record [s] PO# Field:5 = PO# Field:S[LAST] |

Using the component rule in this way defines a PO as all the consecutive Records that have a PO#
matching the PO# in the previous Record.

12345 500 dress 065.99
12345 1000 pant s 032. 50
12345 300 sui t 200. 70
14478 275 pant s 032. 50
14478 500 sui t 200. 70

How does Mercator handle the data you have? Mercator looks at the first record, and checks that the component
rule comes out to be true.

Note The index value [LAST] is interpreted as [1] when there are no previous occurrences. For
example, on the very first Record in the PO file, the component rule is interpreted as:

Is PO#¥ Field:Record[1] = PO# Field: Record[1]?

Is PO# Field: Record[1l] = PO# Fiel d: Record[LAST] ?
I's 12345 = 12345? Yes.
s

Next, Mercator looks at the second record.

Is PO# Field:Record[2] = PO# Field: Record[LAST] ?
I's 12345 = 123457 Yes.
_—

etc.

The diagram below shows how Mercator evaluates the component rule for the first four records in the
data. As a result, Mercator knows that the first three records make up a single PO.

Design Guide
129

Chapter 7 - Using Control-Break Logic to Define Data

Is PO# Field:Record[1] = PO# Field:Record[LAST] ?
Is 12345 =12345?

Yes

Is PO# Field:Record[2] = PO# Field:Record[LAST] ?
Is 12345 = 123457

Yes

Is PO# Field:Record[3] = PO# Field:Record[LAST] ?
Is 12345 = 123457

Yes

Is 14478 = 123457

No

Must be a different PO

Is PO# Field:Record[4] = PO# Field:Record[LAST] ? I

For the output file, you define a numeric Item.

@ Data
- @ #FP0s < #POs is defined as
@ Field a number
@ ltem
, @ FOg
@ Price
- @ File
- @ PO
- @ Record

_ILantity

You will use the #POs Item as your output card type in the Map Editor.

Design Guide
130

Chapter 7 - Using Control-Break Logic to Define Data

Using the Map Editor

In your map, you use the COUNT function to count the POs in the input file. You see that the control-
break logic allowed Mercator to recognize the correct number of POs in the file - two.

= Meicater Map Edisn C imerc aloVE samples'Wonliol mma W abeCsunti ke

B Ed M Ma [osd Bubei Tock Wiedkes Help |
oA |8 Ik Brad £8P0 R
H-COUNT (POFOFile) =]
=1l

i M Sovrce Files
= iy Conteol

#1 PO [Fils D) | || Y CourFike ar0s Dersy
= W MaksCouniFila EIFOFil= Diuigaii Rk
SFos CourFie [=COLNT { PO-POFie]

HIFTE Fieio

Bl Dusnity Fiald

12345 50

L2345 300 Sult 200,70

L4478 2k Fants 032, %0

L4470 S0f Suit 200, 70
i & | =
S [*1Coneaston | I, { *
Fianap L.

Design Guide
131

Chapter 8 - Using Partitioning to Simplify Map Rules

Chapter 8 - Using Partitioning to
Simplify Map Rules

This chapter explains how to partition types, to make your map rules simpler.

What You Want to Do

Suppose you have a file containing a collection of records, in no particular order. Each record can come
from one of three kinds of business partners - customers, suppliers, or distributors. In addition, each
record comes from one of three different applications - a forecast, purchase order, or invoice
application.

A particular field in each record tells you what business partner it came from, and another field tells you
which application it belongs to.

Suppose you want to create a file of only invoices to send to your accounting department, and a file of
only purchase orders and forecasts to send to your order entry department.

In addition, you want to send the MIS department a report on the activity of your customers, suppliers,
and distributors.

How to Do It

In the Type Editor, define the data file of records. Partition Record into the different kinds of records. In
addition, define the activity report.

In the Map Editor, create a map that has two output cards - one for the accounting department file, and
one for the order entry department file. Create another map to generate the activity report.

Files Used in this Example

For this example, use the following files, which are in your mercator\examples\general\deliver directory
(folder in Windows 95).

File Use
deliver.txt Use this file as input data.
deliver.mtt This type tree defines the data files.

deliver.mms This file contains the map explained in this

Design Guide
132

Chapter 8 - Using Partitioning to Simplify Map Rules

example.

report.txt This output file is created by running the map.

Using the Type Editor

The type tree deliver.mtt defines both the input and output data. The type Record is partitioned into
Forecast, Invoice, and PO. Then, Forecast and PO are partitioned even further. All in all, there are six
different kinds of records.

@ Data

- @ ActivityReport
- @ Collection
- @ Field
= @ Parner
B @ Customer
- @ Distributar
o B i
= 4 Record
= ¢ Forecast
@ Customer
- @ Distributar
@ Supplier
@ Invaice
5 PO
- @ Customer
- @ Distributar

The file is made up of records in a random order. It is defined as the type Collection.

To determine whether a Record is a Forecast, Invoice, or PO record, you can look at the value of the
ApplicationID. The Identifier attribute on the component ApplicationID tells Mercator that the
components up to, and including, ApplicationID can be used to distinguish record types.

A component rule tells Mercator that the ApplicationID for Forecast is “F,” for Invoice “I,” and for PO
“P."

Design Guide
133

Chapter 8 - Using Partitioning to Simplify Map Rules

¢ Collecion Dats M=

@ Data Cormponent Fule
- @ ActivityReport {4 | Record (s) | |
& Collcton
7@ Feld ﬁ
=} artner
W& Customer] 4
&3 9 Distributor Component Rule
B 9 Supplier T |Eartner
B @ | jAppImapnnlD ="F"
=& Forecast 1| Guantity Field * Invoice Record Data
@ Custorner | |ForecastType Fiel ,
- @ Distributor | [ForecastPeriod Fi ippherpaﬁner
'....l.. Suppher o pate e Campanent Fule |«
é}"*Pn;cnce ~ Ly S.unnlie_r F's_urtner _ _
@ Custormer | lﬁpplmgtmnlD Field |5="|
. Fanner |Imvoiced Field
- @ Distributor 4 21 |Date Field
Component | term# Field
4 [Partner | Quantity Field |
0| i Application) |Price Field
1 [Field (=) ~|
L T

On the next level of partitioning, the types can be distinguished by the first component. For example, the
first component of a Customer Forecast record is Customer Partner, but the first component of a
Distributor Forecast record is Distributor Partner.

Design Guide
134

Chapter 8 - Using Partitioning to Simplify Map Rules

E. Deliver. mtt M} ¢ Customer Forecast Record Data

@ Data Component Fule
- @ ActivityFeport % | Customer Partner
- @ Collection | 1 ApplicationD Fiel |$="F"
G- @ Field 0 |Quantity Field
Eh @ Parner | |ForecastType Field
- @ Customer L seacsa #llovicd Ciold
__ # Distributar |* | Distrbutor Forecast Record Data - O] x|
& @ Supplier Companent Rule
=@ Record |4 |Distributor Partner |
=@ Forecast 2| 3 ApplicationiD Fi|$="F"
B CI:,IStI.:er'lEI’ ® Suppher Forecast Record Data |_ O] =]
- @ Distributor S e e
@ Bupplief Component Fule
@ Inwoice +» | Supplier Partner
5% PO 1| iApplicationlD Fi [$="F"
- @ Customer 1] |Quantity Field
— @ Distributor |2 [ForecastType Field
| |ForecastPeriod Fiel
| Date Field |

The type Partner is the first component of each record. It is partitioned by Customer, Distributor, and
Supplier, and then by specific companies.

The component rules on each company’s partner type give the values for each field. In this way,
Mercator knows when it is looking at the ACME customer’s record, for example.

Design Guide
135

Chapter 8 - Using Partitioning to Simplify Map Rules

E. Deliver mit _ O

@ Data
- @ ActivityReport
- & Collection ® | ACHE Customer Partner Data
&= @ Field Component Rule
£t 4 Partner 2 [Qualifier Field__|$="DUNS"
=@ Customer 4 IpadnedD Field |$="0123"
@ ACME
@ B]
- @ Distributor
F- @ Supplier
= Record
5 4 Forecast # Bob's Cusztomer Partner Data
@ Customer Component Rule
@ Distributar 4 () Ciifier Field | $="DUNS"
@ Supplier Yo PartnedD Field [§="3214"
- @ |mvoice
59 PO
-~ @ Customer

Using the Map Editor

There are two executable maps in this example.

OrdersByDepartment

In the executable map OrdersByDepartment, the input file is mapped to two output files. One output file
is for the Accounting department. The other output file is for the Order Entry department. Each file is
defined by the same type, Collection.

To generate the records in the Accounting output, you want to map the Invoice records from the input.
The input Record is the same as the output Record, and Record is partitioned, so you can drag and drop
Invoice record from the input to Record in the output.

Design Guide
136

Chapter 8 - Using Partitioning to Simplify Map Rules

Morcalm Hap Edier - C:immceliodE xsmpleciDelreon. mnc ledenBplepaimeni

B G Vew M Cod Fues Toos indes Hep
S E & Ve ahRSd G e

ﬂ-r-.-'m:m-: » Pipoced Collocion III
EEN [iom Bl
Map Sourca Fles
= [y Delroee ff! Callacton {Colacion Dain] #7 OvckaiEnivy (Collecion Diaia)
i @ AckanFepon =l Calecion ¥ Accounbn Bizachucen
glCa Dete)
= @ Jirders ByDopsrim. —,.-ﬁ-.u.'.m.: I-.-i Ciutpui Rula
#r Foracast |=1 Arcounhng
Ehlnrics o 2 > R
eIy VI— 1!!! :'- E.
%F dr Famcasi
2w e
& PO
o) | 2 2
Tyl |5 Compostion il | =
Rsa) [[mum

To generate the records for the OrderEntry output, you drag and drop Forecast to Forecast, and PO to
PO. In this file, you do not want any Invoice records, so you put “=NONE” in that rule cell.

Design Guide
137

Chapter 8 - Using Partitioning to Simplify Map Rules

= Meicater Map Edtn C imerc aloVE pampleriDebver. mma DideaBpllepatosnt

 ble ES Mdew Moo Cwd Huler Tooh fwecos Heip
w28 & v BE SR ed 99 L |

-5- ForecastHHecomd:Collection H
=] =
l.‘ Map Sownce Files
=] "{:h'l-'l #1 Colgcion (Collaction Datn) | #1 Accousiing [Colecion D)
- i ActiiyPepo ElColecion 2 Cede Eniny (Collection Dain) |
< @ OmdersFhyDlepertm & Faoom (5] Churdpast Rule
________ - DdsrEntry
T S Racond (5]
.................................... % Foscact..,, [=Foescastes |
......... e j‘lll"’-"’q =fming
i B » =DicsRecoed
4] | 5
- -
faust [F1caneantan] il [»
Fansy T THUH |

You can see how Mercator mapped the records to the appropriate output files.

Design Guide
138

Chapter 8 - Using Partitioning to Simplify Map Rules

= Meicater Map Edtsn C \morcaloVE raspler\Debver. mma DideraBpllepatasent

Bt E® Y M Col Hubr Tooh edos Hep |
2R |8 e BT 8 N PR
:’- ForecastyHecomd:-Collection H
sl

i M Sovrce Files

= "{:MI #1 Colecion iCollaction i) [#1 Accnusiing [Dolecion Do)
= i ActiayRopot ElColecion 2 CierdeiE lexction O
a1 @ OrdersBhyDlepartm & Racond {5) Wﬁpj oin) Ruls !
#r Foratast =1 OrderEminy
&nice Racond 14]
I Irpat® Ciollscian L a2 cheliee bt |0 =] =F pepcash< =R

=g
=P Recod

t o momibhe
0507999559k 0d¥oboai
05079945 5JRF Q00004304000

rl

1.4 qi i
12 TLE-339-UFDOT4 308902
CIES 444% FSEE90

7 Clufpasi 81 Acosinsng ["t 0 S E stpimphe % o0oe i

T18-339-1700L4 29090~ 0&0F393%8-h ooFDOooLon

4] | 5 '
P [-'lt:urr-:mn]J H I _,'ﬂ
Fasay L I
ActivityReport

In the executable map ActivityReport, the COUNT function is used to generate some of the output
fields. In the last two output fields, the map rules calculate the percentages of Customer and Distributor
records in the entire input file.

The COUNT function counts the number of objects in a series. The syntax of the COUNT function is:

COUNT (Series of objects you want to count)

Design Guide
139

Chapter 8 - Using Partitioning to Simplify Map Rules

= Meicater Map Editsn C imerc aloVE samples D ebver. moma Sl pBicpa)

__BEIMHI-LHHMT-&*MI:H |
2 & yRE BWRE® GY S0 W

H-COUNT | Customes € PO Ficord Collection | =]
sl
i M Sovrce Files
= iy Dekve #1 Calacion rCodizctian Dela) B Fapon (achatSapon D)
= i Aoty Repod ElColecion Ciuigui Rida

- @ OrceeeyDeperm ||| | NN [Repm
% Foracesi B Diata Figld =CURAENTOATE()
Hl lrsmios B aCyetemedPOE F [l CiNT |
PO Bl #Customenf eeca =G OUNT | Cusiom
ol ®igtnbuborP O =COUNT Diskobun
Bl #WhsnbuborFores =COLUNT Ditahw
B eSupplaresmce =COUNT (imaica<
ol SCuslamePOs =100 ™ $ s e P
B WOmintodorPOs =100 * #Distnbule

1] Tﬂ .
Prust [*] Comgosilan | »
Fisady TR

Design Guide
140

Chapter 8 - Using Partitioning to Simplify Map Rules

Here is a view of the output window maximized. You can see the different kinds of map rules used.

#1 Report (ActivityRepon Data)
Cutput Fule
=1 Repart
1 Date Field =CURRENTDATE
1 #CustomerPOs Field =COUNT [Customer<>PO<>Record: Collection |
L #CustamerFarecasts Field =COUNT [Custamer<>Farecast<>Recard: Callection)
O #DistributorPOs Field =COUNT { Distributar<>P0=>Recard: Collection)
L #DistributarFarecasts Field =COUNT [Distributor<>=Forecast<>Recard: Callection)
O #Supplietinvaice Field =COUNT { Invoice<>Recard: Collection)
O %CustomerPOs Field =100 = #CustomerPOs Field:Repart / COUNT [PO<>Hecord: Collection)
1 %DistributarPOs Field =100 * #DistributorPOs Field:Report / COUNT [PO<>Recard: Collection)
1 Card(s) ZlE

Design Guide
141

Chapter 8 - Using Partitioning to Simplify Map Rules

The resulting output file shows the count of each record type.

= Meicater Map Edis

L hvmoe gl o VE pampler D ebver. mma At pFicgon

_]BEIMHJ:HHLHT-&*MM
2R |8 ¥ e BT #E N LR
-’- COUNT | Cestomes s PO £ Pisoond Collsction |

'
L& Map Sovrce F
= Wy Dok 1 Rageoet cininFlepsan Diin]
@ Aoty | [=Colecion Cuslpit muls
<1 @ Orchers & Pacon is] =] Fspad
'b:Fun:ﬂ'.wl B Date Fald =CURRENTOATE()
i ol o =
14 Inputd Collechion

L mecalon it camplecil s irems xl -F| F

IOHE 0123 FO4=000IHY for o monthe EGFEE] =
12 718-339-1700T433E859D=2 DG0759999-% poagoonilogen PretshutercePOCeReco
DUHS 4445 PESSSD0

DBNTEFRE930R 000On4004000 sihutor=F ecasts

-_‘“IEI- I?':‘_il-l L : ”“

Note The value of the first field in your output may be different each time, because it is the current
date.

Design Guide
142

Chapter 9 - Mapping Optional Inputs

Chapter 9 - Mapping Optional Inputs
This example maps data that has optional data objects.

What You Want to Do

You have a data file of statistics on states in the U.S. The statistics for each state may include population
density, median household income, average summer temperature, average winter temperature, and
average yearly rainfall. Suppose you want to create a new data file that contains only the population
statistics.

Here is a portion of the input data:

M dwest : OH 257, 3738/ 74, 31, 37: 1 L/, 4285/ 76, 26, 33: | N/ 142, 3687/ 75, 29, 39
Mount ai n: MT/ 5, 3130/ 68, 19, 11: 1 D/ 8, 2953/ 75, 29, 11: W/ 3, 3353/ 70, 26, 15
Pl ai ns: M\ 48, 3635/ 73, 12, 25: | A/, 3549/ 74, 20, 33: MJ 67, 3458/ 78, 32, 35

The diagram below shows how the data objects within a Region are organized. A Region is made up of
a RegionlD, and a series of States. Each State is made up of a StatelD, Human, and Weather statistics.

Region
State State

State
Human

M dwest : OH 257, 3738/, 74, 31, 37: 1 L/ 196, 4285/ 76, 26, 33: | N/ 142, 3687/ 75, 29, 3

L

RegionID StatelD Weather

Within each data object, Human, are the statistics for population density and household income. Within
each data object, Weather, are the statistics for average summer temperature, average winter
temperature, and average yearly rainfall.

Design Guide
143

Chapter 9 - Mapping Optional Inputs

Human Weather

B S .
NN

Population | symmer | Rain

Income !
Winter

You want to extract each StatelD and corresponding Population. The output file consists of a series
StatePops, containing a StatelD and its Population.

StatePop StatePop

iy

OH, 257*1 L, 196*

How to Do It

Define the input and output data in a type tree.

In the Map Editor, create an executable map. To generate each StatePop in the output, use a functional
map.

Files Used in this Example

For this example, use these files, which are in your mercator\examples directory.

File Use
sts.txt Use this file as the input data file.
states.mtt This type tree defines the data files.

states.mms This map source file contains the map
explained in this example.

output.txt This output file is created by running the map.

Using the Type Editor

The input types are defined like this:

Design Guide
144

Chapter 9 - Mapping Optional Inputs

@ Data Component Rule
- @ Input =1 |Region (3)
- @ Hurman
-~ @ Region
- @ RegionlD
@ s
@ StatelD Component Rule
- @ Stafistic Component d
- @ LnitedStates — {RegioniD j Hga?"r:?r?[ﬂ'ﬂ
@ H et = [Weather .
- @ Output
Component ® Weather Input Data _ [Of x]
| Population Statistic {0:1) Component Fule

L |Income Statistic (0:1)

1| Summer Statistic
1 |Winter Statistic
| |Fainfall Statistic

Notice that the Population Statistic is optional—it has a component range of (0:1). In the data, some
Population Statistics are missing.

Missing Population Statistic

M dwest : OH 257, 3738/ 74, 31, 37: 1 L/, 4285/ 76, 26, 33: | Nl 142, 3687/ 75, 29, 39
Mount ai n: MI/ 5, 3130/ 68, 19, 11: | I/ 8, 2953/ 75, 29, 11: W/ 3, 3353/ 70, 26, 15
Pl ai ns: M\ 48, 3635/ 73, 12, 25: | A/, 3549/ 74, 20, 33: MJ 67, 3458/ 78, 32, 35

Missing Population Statistic

The output types are defined like this:

Design Guide
145

Chapter 9 - Mapping Optional Inputs

_
@ co
. . |nput Q% LR did

5 @ Output StateFop (5)
& StateFop ll _
@ Component Rule

| StatePop (s

& StatePop Output Data M=l B

StatelD Input

i o
Component Fule

| StatelD Input
| |Fopulation Statist

Using the Map Editor

The rule on the output StatePop references a functional map, MapState.

You want to generate a StatePop only if Population exists in the input. Therefore, Population Statistic is
one of the arguments of the functional map. This ensures that if Population Statistic is missing, the
functional map is not called, and the StatePop is not created for that state.

The other argument of the functional map is StatelD.

Design Guide
146

Chapter 9 - Mapping Optional Inputs

Morcalm Hap Edber - C:immcalod\E semplec S later s Mazim
B B Vi M Coed Bubes Took e ek
ME2e 8 Yne 3WE O G P 0

q-mpimrﬂwdt i Dot . Propusibion Stetishic: - LS et | -]
| |
=EN T Fiom o] ED 101]
i Mg Souice Fles
=iy Sates l USDes [UnieciSinie e Ingut Dala) | St [Stats Oupest Dt |
4) M S =] LS Daie Dulput Fus
- @ haing ElR=gion (s} ERErT
Bl FegioelD # StaiePap [5] | =MagStaie | Slaie)
=S (=)
HSmisiD
ElHusnan o]
Bl Populaton Stehshe (1]
ol e Siaigsic)
ety
" Ogumt [*2Comeoston A4 A4
Fsady [[mml

In the map MapState, the StatelD and Population Statistic are simply dragged over to the outputs.

Design Guide

147

Chapter 9 - Mapping Optional Inputs

Morcalm Hap Edier - C:immcalod\E senpleci S later mmc MapSiste
i Lot Yiew Map Cod fules Tooks Wiedos Help
M2 A 8 Yhe Bl Os G P P
q-ﬂ‘:&clt‘ -]
| |
=N T Fiom 0| E o]
i Mg Souice Fles
= m'_.;\-m.; #? Poped abos [Populaton Saksbc ngu h SFop (StalsPop Outps Das) |
+ 3 R [ExatmiD [SrateiD Inpun Cane) | Chlput Sule
+ & rastar ERE™
B StaeD Ingin = el
Bl Populabion Statiste =P gy lation
Psum [#: Composton] EL| a4
Foeady [[muW

The output file shows that a StatePop was not created for the states having no Population Statistic. For
example, IL had no Population Statistic, and no IL data was created in the output.

Design Guide
148

Chapter 9 - Mapping Optional Inputs

Morcalm Hap Edier - C:immcalod\E senpleci S later mmc MapSiste

Fie [t Yiew Mag [ad fubes Took 'wiede Help

MEH & ¥ el e TN T @

qvﬂwm[:

-

SEN [R e
i Mg S ouince Files 2 Fapuision Pt S b
= m Crabcs L Fpusahin g Al ENg Iipasd “-l H"‘T':&_P“P wnm;
H) Mg St 1 SiakiD (SiakiD npu Daia) Digii Aulg
R LT HEinis 2l |EPop

Hidwest OH-IEF, JTa8-TE . d1
Houmbsim HT-6 J130-58.19.11: 000 -y
Flauns: BH-48 360620, 12 26 Ik]‘:lq-"l 20,20 Wha T JagieT

ch. 33 IH-142. 268
T b B b

aa ll

There is no output
data for IL

Design Guide
149

Chapter 10 - Mapping Multiple Files to One File

Chapter 10 - Mapping Multiple Files
to One File

This chapter includes three examples. Each example maps two input files—one header and one detail
file—into one output file of purchase orders.

What You Want to Do

You have a header file made up of header records. Each header record includes a customer number, an
account number, a PO#, and a date. You have a detail file made up of detail records. A detail record
includes a PO#, an item ID, a quantity, and a unit price.

You want to create an output file made up of purchase orders. Each PO has a header and a set of details.

Design Guide
150

Chapter 10 - Mapping Multiple Files to One File

How to Do It

In the Type Editor, define the input header record and detail record.

Fixed data, with CR/LF

terminator
P Twoliesnt PI=IE|
'.:' Data_ |* Header Record Input D ata =] E3
- @ Field FODate Field =
- i@ Accountd -
- @ Campany = m
- @ Custorner# Compaonent Rule &
- @ Dascription 1 _l|Customer# Field Fi.xed data,
- @ |temlD 2) |Account# Field with .CR/LF
@ PO 3) [PO#Field terminator
- @ PODate 4 @|PODate Field e
- @ LnitFrice |
B . Input #® Detail Record Input Data M=l E3
= @ Record o
@ Detail InitFrice Field =
@ Header |4 .
= @ Clutput Component Fule
@ 1 () [PO#Field
@ Header 2)|temlD Field
@ PO 3 |ty Field
4 | UnitPrice Field

Design Guide
151

Chapter 10 - Mapping Multiple Files to One File

Define the output PO, Header and Detail.

Implied data, with CR/LF terminator

@ Data Detail (s) :
= @ Field 4] _;|_I
~ @ Account Component Rule
@ Company | |Header |
@ Customer 1| Detail (5]
- @ Descriptic |
- @ temlD
eror | O - 51|
- i@ PODate FODate Field = | Fi.xrcled d7ta,
@ Qty _I;I with CR/LF
4 y .
- @ UnitPrica 1] terminator
5 @ hput Component Rule
5 @ Record 1 |Customer# Field
@ Detal |2 PO FIE|I2|-
‘@ Header _1|PODate Field |
= @ Outpu
e Qty Field :
- @ Header . _’l_l
L il PO _I
Component Fule
| |Description Field |
1| Gty Field

T

Infix delimited data, with CR/LF terminator

Next, look at how your data is organized to decide how to define the header file, detail file, and PO file,
and what map rules to use.

In each of the following examples, the files are defined differently. For each example, create an
executable map, using the header and detail files as inputs, and the PO file as the output.

Case 1 — Header and Detail Files in the Same Order

Suppose the detail file has been sorted to correspond with the data in the header file. That is, the first

header record goes with the first set of detail records, the second header record goes with the second set
of detail records, and so on.

Design Guide
152

Chapter 10 - Mapping Multiple Files to One File

The input data looks like this. The dotted lines indicate how each Header Record corresponds to a
particular set of Detail Records:

Header File Detail File
4500 kesil 144 JUul-26-97 w—pw 144 aalds 10 5.60
7000 wewid 175 oot-04-97 \144 aala’? 25 3.32
4500 sShrils 100 May-14-97: 175 aas33 100 2.35
\ 175 aalzZz 40 2.25
175 aal4s 15 3.70
BT =1= 10 0 N N Fra 0.

You want the output data to look like this:
4500 PO#144 Jul - 26- 97
aa045, 10
aa097, 25

7000 PO#175 Cct-04-97
aab33, 100
aa022, 40
aa045, 15

4500 PO#100 May-14-97
aa011, 10

Files Used in Case 1

The following table lists the files used in Case 1.

File Use
header.txt You create this file to use as an input data file.
detail.txt You create this file to use as an input data file.

twofiles.mtt You create this type tree to define the data files.
twofiles.mms You create this map source file.

output.txt This output file is created when you run the
map.

Design Guide
153

Chapter 10 - Mapping Multiple Files to One File

Using the Type Editor

Define the three files in a type tree. To define the detail file, define the type DetailSet, which is made up
of Record(s). Use control-break logic in a component rule to define how the sets are organized—when
the PO# changes, a new set begins.

For more information on control-break logic, see Chapter 7.

Define the type DetailSet ¢ Header File Input Data O] x|

Header Record (s E
E. Twofiles. mtt ﬂ © _hl_l
@ Data Component Fule
= @ Field £l | Header Record is)
- @ Account®
@ Company

'# Detail File Input D ata x
- @ Customers - =101 x|

- i@ Descrigtion DetailSet (s) :

- @ ltemiD K E
- @ PO# Compaonent Rule

= - Use a component rule
- @ PODate £l | DetailSet (=) on the component

- @ LnitPrice

= '.' Input _ # DetailSet Input Data
- @ Detail Set Detail Record (1:5) =

E}i File H LI_I

Detail Record

: a:t;éler Component 4 Rule
B @ Record £ | Detail Record (1:5) PO#S = PO#S[LAST]
- @ Detail

@ Header T

= @ Output '®* | File Output Data M=k

- @ Detail PO (s) =
- @ File o .

: Component Fule i’
| PO (=)
[
Design Guide

154

Chapter 10 - Mapping Multiple Files to One File

Using the Map Editor

In the executable map, there are two inputs—the header file and the detail file. The output is the PO file.

Use a functional map to generate each PO in the output. The arguments to this map, “MakePO,” are a
Header Record, and the corresponding DetailSet. To get the corresponding DetailSet, use the CHOOSE
function. The CHOOSE function picks an object at a given index in a series. You want to pick the
DetailSet whose index matches Header Record’s index. For example, when Header Record #2 is used,

the CHOOSE function retrieves DetailSet #2 as well.

The rule on the PO output is:

=MakePO (Header Record: HeaderFil e,
CHOOSE (Detail Set: Detail File, | NDEX (Header Record: HeaderFile)))

The executable map looks like this:

<4 Mercator Map Editor - E-ADesign\Examplesitwofiles. mms twofiles. mms

File Edit “iew Map Card Bulez Toolz “Window Help |

:E@Hlémaamaaﬂ.@'mmw@m

—T' =hakeF0 (Header Fecord:HeaderFile, - |
TJI CHOODESE (DetailzetDetail, INDEX (Header Record:HeaderFile))) -
4 From M= 1o [[O0] =]
|#2 Detail (Detail File Input Data) #1 Output (File Output Data)
#1 HeaderFile (Header File Input Data) Qutput Rule
=lHeaderFile =1 Output
:\"";:IHEEldEr Record (5] =l POz =hakeP O (Header
-~ Customer# Field &l Header
[Account Field £l Detail (s)
%----_IF"CI# Field

- PCDate Field

2 Card(s) R 1 Card(s) [T

Feady l_ MLIM v

Design Guide
155

Chapter 10 - Mapping Multiple Files to One File

In the functional map MakePO, the Header information in the output is mapped from the Header in the
input. The Details are mapped from the Detail Records, by using another functional map—MakeDetail.

< Mercator Map Editor - E:ADesignAExamples\TwoFiles. mms MakePD

File Edit “iew Map Card Bulez Tool: wWindow Help |
M2 8 ¥nk 8 Hrae| 88 L2 |0
=l -takeDetail { Detail Record:DetailSet) -]
=
11 LI
,_ELme O] =] "-‘]‘_'Tu _ (O] =]
|#2 Detailset (Detailzet Input [#1 PO (PO Output Data)
#1 HeaderRecord (Header Re Output Rule
;_Iljeaderﬂecurgl = FO
?----_ICustDmer# Field =l |Header
;*""_l.-":"ﬂ:l:l:lur'lt# Field | Company Field |=Custormer# Field:Head
?----_IF"D# Field = PO#Field ="PO#" + PO# Field:He
= JFODate Field | FODate Field =FP0Date Field:HeaderR
El Detail (3) =MakeDetail { Detail Re
7 Cardvs) e 1 Card(s) [T
Ready MLUIM A
Design Guide

156

Chapter 10 - Mapping Multiple Files to One File

The final result shows that Mercator matched the header with its corresponding detail set.

< Mercator Map Editor - E:A\Design\ExamplesATwoFiles. mms Executable
Eile Edit “iew Map Card Bules Toolz Window Help |
MR 8 ¥R B Re By PR
—":' =hMakeP0 [Header Record:HeaderFile , =
ﬂ CHOOSE [Detail3etDetailFile , INDEX | Header Record:HeaderFile 1) ke
T
"1 E! Inputitl HeaderFile - E:\Design‘\Examplesiheader.txt [H=] E3 "
& o) =]
| 4500 ke=11 144 Jul-26-97 -
7000 wevi8 175 Oct—-04-97
4500 =hbrlG 100 Maw—-14-97 — | itput Data)
el El Input#? DetailFile - E:\DesigniExamplesidetail.txt [I=] E3 Fule
=l 144 aal4b 10 .60
144 aalsa? 25 4 32
175 22533 100 235 AakePO (Header R
175 aalz? a0 2. 25
175 aalds 15 3.70
100 aalll 10 £.90
Ei: Outputiil OutputFile - E:\Dezign\Examplesioutput. txt [I[=] B3
4500 Pogldd Jul-26-97 -
aa097, 25 —
aadds, 10
7000 POEL17S Oct-—-04-97
aabdd. 100
aab33, 100
aaldds, 15
aalz2z, 40
4500 POE100 Hay—14-97 e
k=011, 10
7 Card(s) =l
Kl I 0
Ready ML o

Case 2 — The Detail File is Not Sorted by PO

Suppose that the detail file is not organized into sets of detail records. That is, the detail records are in a
random order. The detail records for PO# 144, for example, are scattered throughout the file.

Design Guide
157

Chapter 10 - Mapping Multiple Files to One File

Here is the new detail file:

175
175
100
144
175
144

aab33 100 2.35
aa045 15 3.70
aal0l1 10 6. 90
aa097 25 4,32
aa022 40 2.25
aa045 10 5.60

Files Used in Case 2

The following table lists the files used in Case 2.

File Use

header.txt Use this file, which was created in Case 1, as
an input data file.

detail2.txt You create this file to use as an input data file.

newdef.mtt You create this type tree to define the data

files.

twofilessmms This is a continuation of the map source file

output2.txt

you created in Case 1.

This output file is created by running the map.

Design Guide
158

Chapter 10 - Mapping Multiple Files to One File

Using the Type Editor

Define the detail file as made up of detail records.

E. TwoFiles mtt M=l

@ Data
: :;IPELE: . Dtail File Input Data Mi=] E3
@& DetailSet DEta”SEtESj—;‘
i @ File Rl _*I_I
w m Component Fule
A .;:3 IIH:IDerjder T = DetailSet (s]
P _ =l |Detail Hecord (1:5) |PO# .5
@ Detal) |PO% Field
""" @ Header 1 [terniD Field
=@ Output =1 [oty Field
-~ @ Detal 21 [UnitPrice Freld
- @ File
- @ Header
L@ PO

Using the Map Editor

Create an executable map similar to the one in Case 1. The inputs are the header file and detail file. The
output is the PO file.

In the map rule for the PO output, a functional map “MakePO2” is referenced. The two arguments to
this map are a Header Record, and the entire Detail File.

The map rule for the PO output is:

=MakePQ2 (Header Record: HeaderFile, Detail File)

Design Guide
159

Chapter 10 - Mapping Multiple Files to One File

The executable map looks like this:

<4 Mercator Map Editor - E-ADesign\Examples\TwoFiles. mms Executable?
File Edit “iew Map Card Bulez Tool: Window Help |
B2 8 ¥hEe ISy B LfE| R
ﬁ =hakeF02 [Header Record:HeaderFile . DetailFile) -
1 ll
¢ From =l B 1 To I] [|
#1 HeaderFile (Header File | #1 DutputFile (File Output Data)
#& DetailFile (Detail File InputC Cutput Fula
;:IDetaiIFiIe =1 CutputFil
:‘"";:|D9tﬂ” Record (s} =1 PO(s) |=MakePO2 [Header Re
[ZIPO# Field £l Header
%----_IItemID Field £l Detail (s)
_| City Field
) UnitPrice Field
2 Card(s) KE 1 Card(s) SR =
«| | o
Ready ML o

In the functional map MakePO2, the rule on Detail references another functional map, MakeDetail2.
The argument to this map is the extract of the Detail Records that have the same PO# as the Header

Record.

The map rule for Detail is:

=MakeDet ai | 2 (EXTRACT (Detail Record:Detail,
PO# Field:.:Detail = PO# Field: Header))

Design Guide
160

Chapter 10 - Mapping Multiple Files to One File

The final results show that, even though the detail records in the input file are not ordered, Mercator still
matched the header with the appropriate details.

=¥ Mercator Map Editor - E:ADesign\Examples\TwoFiles. mms Executable2

File Edit “iew Map Card Bulez Toolz “Window Help

:_%@@mgm%m%%m@mm@m

:Tll =hakeP 02 [Header Record:HeaderFile . DetailFila) - |
1 LI
[Fiome T Bl 1 To P[] |
Bl E! Inputiti HeaderFile - E-\DesigniExamplesiheader.txt [ME ES | oo
4500 ke=11 144 Jul-26-97
#| 7000 wew2B 175 Oct—04-97 m
-| 4500 sbrils 100 Maw—-14-97
{ Header Fe
E! Inputl? DetailFile - E:\Design‘Exzamples\detail2.txt [H[=] E3
175 aa533 100 5. 50 -
175 22533 100 2,35
175 aa045 15 3,70
100 011 — —
144 2209? Ef: Outputfl OutputFile - E:\Design\Examples\output. txt
175 aaliz 4500 PO#144 Jul-26-97 -
144 22045 2a097, 25 —
aa045,10
7000 PO#175 Oct—04-97
aab33, 100
aabid. 100
aald4s, 15
aalzZ. 40
2 Cardis) 4500 PO#100 Hay—14-97 -
P | aaldll.1o j
Ready | [MLIM | 7|

Case 3 — Organize the POs by Customer

Suppose you want the POs in the output to be sorted by customer. The customer number is the first field
in the header of the PO. You define a POSet, made up of POs for the same customer. To generate a
POSet per customer, you use the UNIQUE function.

Design Guide
161

Chapter 10 - Mapping Multiple Files to One File

Files Used in Case 3

The following table lists the files used in Case 3.

File Use

header.txt Use this file, which was created in Case 1, as
an input data file.

detail2.txt Use this file, which was created in Case 2, as
an input data file.

newdef.mtt You modify this type tree, which was created
in Case 2.

twofiles.mms This is a continuation of the map source file
created in Case 1 and modified in Case 2.

output3.txt This output file is created by running the map.

Using the Type Editor

The definitions of the input files are the same as those in Case 2. Change the definition of the output
file. It is made up of POSets.

. NewDef MTT !IEI
@ Data

: ~
M- @ Field '* File Output Data M [=] B3

B @ Input |F’DSEt (5] 3:
= @ Output . 4

- @ Detail Component Fule

@ @ 2 |FOSet (s)

- @ Header

e PO
@ POSet

Company Field:Header$ = Company Field Header$[LAST] =

4 e

Component Fule
£ |FPO (s) Company Field:Header § = Company

A POSet consists of a series of POs that have the same Customer# Field. Use control break logic in the
component rule for PO.

Design Guide
162

Chapter 10 - Mapping Multiple Files to One File

The rule for the PO component of POSet is:

Company Field:Header$ = Company Field Header$[LAST] —

4 e

Compaonent Fule
£ |PO (s] Company Field:Header:§ = Company

Using the Map Editor

In the executable map, the rule on POSet refers to the functional map MakePOSet. The first argument is

the unique Customer# Fields. This generates one POSet per customer. The second and third arguments
are the entire header file, and the entire detail file.

The map rule for POSet is:

= MakePOSet (UNI QUE (Custoner# Field:.:HeaderFile), HeaderFile,
DetailFile)

Design Guide
163

Chapter 10 - Mapping Multiple Files to One File

The executable map looks like this:

<4 Mercator Map Editor - E-ADesign\Examples\TwoFiles. mms Executable3

File Edit “iew Map Card Hules Tool: Window Help |

:_%@@mgm@m%%@gmm@m

ﬂ =hakePDSet [LUMNIQUE [Customerd Field::HeaderFile), HeaderFile , DetailFile) LI
] ll
T 1o e =S
|#2 DietailFile (Detail File Input D #1 CutputFile (File Output Data)
#1 HeaderFile (Header File Input Output Rule
=lHeadearFile =1 CutputF
E~----;:”—haau:ier Record (3] =1 POSet { =makePOSet [1
[Customer# Field =l FOI(g) -
| Account# Field &l Header
_|PO# Field &l Detail (s
| PODate Field
2 Card(s) iE 1 Cardis) i+
4] | i
Ready I_IWI— i

Design Guide
164

Chapter 10 - Mapping Multiple Files to One File

In the MakePOSet map, the rule on PO references another functional map, MakePO3. The first
argument of MakePO3 extracts the Header Record that has the same Customer# as the Customer# in
input card 1. The second argument is the entire Detail File.

<4 Mercator Map Editor - E:ADesignsExamplesiTwoFiles. mms MakeP0Set

File Edit “iew Map Card Hules Tool: ‘wWindow Help |

MR 8 ¥hk A 88 & R
—":' =MakeP03 [EXTRALCT { Header Record:HeaderFile , -
ﬂ Customer# Field: :HeaderFile = Customerd). |
_From mEE T 1o = |

|#2 HeaderFile I:HEEldEI’ File |r'||CII #1 POSet I:PDSET Clutput DELTEL:I

#1 Customerd (Customer# Field C Output Rule

_IEustDmerﬂ =] POSat
=l PO(s) |=MakePO3 (EXTRA
&l Header |
&l Detail (s
3 Cardis) E 1 Cardis) HH -l
Kl | [T
Ready [MLIM S
Design Guide

165

Chapter 10 - Mapping Multiple Files to One File

In MakePQO3, the rule on Detail references the map MakeDetail3. The argument to this map is the Detail
whose PO# matches that of Header Record.

¢ Mercator Map Editor - E-ADesign\Examples\TwoFile:. mms MakePD3

FEile Edit “iew Map Card Bule: Toolz Window Help |

M2 E 8 ¥hER SHhE A B8 & R
—f' =hdakeletaild [EXTRACT (Detail Record:DetailFile - |
le FO# Field: :DetailFile = FO# Field:HeaderReacord)) =]

=}’ From M=EE 1 To M= E R

|#2 DetailFile (Detail File Input D

#1 FO (FO Cutput Data)

#1 HeaderRecord (Header Reco Output Rule
ﬂheaderﬁecurd =l PO
=l [Header

| Compan =Customer? Field:He
Ol POfFie ="PO#" + PO#Field:
L PODate =P0O0Date Field:Heade

2l Detail (s|=MakeDetaild { EXTR

2 Cardis) H 1 Cardis) i vl

<] | i

Ready | [MUM i
Design Guide

166

Chapter 10 - Mapping Multiple Files to One File

In the resulting output file, the first POSet contains POs for customer #4500. This is followed by a
POSet for #7000.

= Mercator Map Editor - E:ADesignAExamples\TwoFiles.mms Executable3

File Edt %iew Map Card Bulezs Tool: Window Help |

M2 8 ¥DRE B Rre® B 2| W

:Tll =hakePOSet (UMIQUE [Customersd Field:HeaderFile). HeaderFile . DetailFile) - |
1] | :J
B E! Inputitl HeadesFile - E:‘DeszignExamplesiheader txt [ES |
E 4500 lke=ll 144 Jul-26-97 [_ O] =] :I
M| 7000 wewZd 175 Cct—04-97 —
4500 =brlh 100 Hay—-14-97 ta]
[=LESY
E! Inputl#? DetailFile - E:\Design\Examples\detail? txt =] B4 e
175 aab33 100 5.50 “
175 aa533 100 2.35
175 aal45 15 3.70 et [LMICIUE
igg ::g%% Eir Output#1 OutputFile - E:\Design:Ezxamplestoutput... [l=] E3
175 aalzd 4500 POfi144 Jul-z6-37
144 aal45s 22097, 25
azal45, 10
4500 POH100 May-14-97
011, 10
2 Card(s) A
jJ Toao POH#17E Ooct-04-97
Feady aa533, 100
azal45, 15
aal22, 40
Design Guide

167

Chapter 11 - Mapping Multiple Files to Multiple Files

Chapter 11 - Mapping Multiple Files
to Multiple Files

This chapter includes an example of mapping a file of purchase orders and a cross-reference file, to a
header file and a detail file. This map shows how you can add data to the output when it is missing from
the main input.

What You Want to Do

You have a file of purchase orders. You want to split the PO file into a Header file and a Detail file. You
also have a Cross-reference file of unit prices.

How to Do It

The Detail file has a Unit Price field, which is not in the input PO file. This Unit Price field is in a
Unit Price CrossReference file—an additional input file. Define this file in a type tree.

In the Map Editor, create a map that has the PO file and the CrossReference file as inputs, and Header
and Detail files as outputs.

Files Used in this Example

The following table lists the files used in this example.

File Use

pofile.txt Use this file as an input data file. It is a rename of the
output3.txt file created in Chapter 10, Case 3.

untprice.txt You create this file to use as the cross-reference input data.
untprice.mtt You create this type tree to define the cross-reference data.
twofiles.mtt This type tree was created in the examples of Chapter 10.

twofilessmms This is a continuation of the map source file you created in
Chapter 10.

hdrout.txt This output file is created by running the map.

dtlout.txt This output file is created by running the map.

Design Guide
168

Chapter 11 - Mapping Multiple Files to Multiple Files

Using the Type Editor

Here is the input PO file:

4500 PO#144 Jul - 26- 97
aa097, 25
aa045, 10

7000 PO#175 Cct -04-97
aab33, 100

aa045, 15

aa022, 40

4500 PO#100 May- 14- 97
aal0l1, 10

The PO, Header, and Detail files were defined in the type tree twofiles.mtt. However, the PO file was
the output then, and the Header and Detail were the input. Open twofiles.mtt and save it as
mnytomny.mtt. Then swap the names of the Input and Output categories:

E. Mnytomny_mtt =] E
@ Dats

G- @ Field

= @ Input
@ Detall

- @ File

- @ Header
= @ Output

- @ Detallset
- @ File

- @ Detail

Design Guide
169

Chapter 11 - Mapping Multiple Files to Multiple Files

The data for the CrossReference file of items and unit prices looks like this:

aa045, 5.
aa097, 4.
aab33, 2.
aa022, 2.
aa045, 3.
aa0l1, 6.

60
32
35
25
70
90

Define the CrossReference file in a type tree:

E. UntPrice MTT [H[=] E3

?---Fj:tgmggﬁef {# CrozzReference Data - |0O] x|
@ ltem Fiowe (5] -
- @ UnitPrice Component Fule

£ | Row (s) |
[termn j:
4] *
Component Fule
— |ltem
| UnitPrice

Using the Map Editor

Create an executable map that has two inputs—the PO file, and the Unit Price file. It has two outputs—
the Header file and the Detail file.

Design Guide
170

Chapter 11 - Mapping Multiple Files to Multiple Files

The map rule on Header Record references the functional map MakeHeaderRecord. Its input is a
Header from the PO file.

<= Mercator Map Editor - E:ADesignAExamplesAT woFiles.mms ManyT oMany
File Edt “iew Map Card Bulezs Tool: ‘wWindow Help |
MR 8 ¥hEk BRI HY S22 W
| -tdakeHeaderRecord (Header POFile) -
-

Il LI
4 From M= 7o =l
#1 CrossReferencefile (Crossk #2 DetsilFile (Detail File Output Dats)

#2 PQOFile (File Input Data) #1 HeaderFile (Header File Output Dat
=IPOFile Clutput Fule
- 2P0 () = |HeaderFile
[ElHeader 21 Header Reco |=pakeHeaderRec =
[Detail =)
2 Card(s) A 2 Cardis) 5 -l
A I i
Ready MLUIM A

The map rule on the output DetailSet references the functional map MakeDetailSet. You want to
generate a DetailSet per PO in the input. You also need the unit price information from the Unit Price
file. Therefore, there are two arguments to MakeDetailSet—a PO and the entire CrossReference file.

The map rule for DetailSet is:

= MakeDet ai | Set (PO PCFile, CrossReferenceFile)

Design Guide
171

Chapter 11 - Mapping Multiple Files to Multiple Files

= Mercator Map Editor - E-ADeszsign\Examples\TwoFilez. mms ManpToMany
File Edit iew Map Card Bules Toolz Window Help |
M 8 ¥he BTy B L2 W
ﬁ =tdakeDetailzet [FO:FOFile . CrossReferenceFile) - |
I LI
4 From 0] ERL =
#2 POFile (Fils Input Data) #1 HeaderFile (Header File Output D
#1 CrossReferenceFile (CrossPe #2 DetailFile (Detail File Output Data)
;_lk:rclssFieferenc:eFilel Output Rule
- =lPaw (2] =] |DetailFile
-~ ltern £l | Detail=et (3] =MakeDetailSet | =
| UnitPrice
7 Card(s) EE 2 Card(s) A+
4] I i
Ready MLIM s

In the functional map MakeHeaderRecord, Company is mapped to Customer# and PODate is mapped
to PODate. The Account# is the literal “ kI r” . The RIGHT function is used to get the right three bytes
of the input PO# and map it to the output PO#.

The RIGHT function extracts characters from a text Item, beginning at the rightmost byte of that Item.
The second argument specifies how many bytes to extract. The syntax of the RIGHT function is:

RI GHT (Text Item Nunmber of bytes fromright)

Design Guide
172

Chapter 11 - Mapping Multiple Files to Multiple Files

File Edit iew Map Card Bules Toolz Window Help

=r. Mercator Map Editor - E:ADesign\Examples\TwoFiles.mmz MakeHeaderRec... =] E3

a2 a &8]»me

B I A& B | PR
X[_RIGHT (PO# Field:POHeader, 3 - |
-
i =i
4 From -0 ERE: o
#1 POHeader (Header Input D #1 HeaderRecard (Header Recard Outp
;Elwﬂderl _ Output Rule
é’""JCDmP_ﬂW Field =1 |HeaderRecord
- PO# Field 2 Customerd# Field =Campany Field:
-~ JFUDate Field L Account# Field ="kl L
| PO#Field =REIGHT (PO# F
O PODate Field =P0ODate Field:P
1 Card(s) 5[5 1 Cardis) I [.l
Kl | [
Ready ML o
Design Guide

173

Chapter 11 - Mapping Multiple Files to Multiple Files

In the functional map MakeDetailSet, the map rule on Detail Record references the map

MakeDetailRecord. Its inputs are a Detail, the PO# from the Header, and the unit price for that
particular Item.

Zr. Mercator Map Editor - E:ADesign\Examples\TwoFiles.mmz MakeDetail... [lj[=] E3

File Edt “iew Map Card Bules Tool: ‘Window Help |
M2 8 ¥ 5hE
8% 2 4@ |

il EA

": =MakeDetailRecord [Detail: PO, -
FO# Field.:FO,
LOOKUPR { UnitPrice...CrossReferenceFile .
tern:.:.CrossReferenceFile = Description |
diFon B[00 o]l
[#2 CrossReferenceFile #1 DetailSet (Detail Set Output Data)
#1 PO (PO Input Data) Output Fule
=IFo | =l DetailSet
?----;:lHeader | =1 Detall Record(1:5) |=takelDet
' ;----_lCDmpanyF L PC#Field L
- AFO# Field 1 lternlD Field
i FODate Fie L Gty Field
----- _|Detall(1 L UnitPrice Field
1| | b
2 Card(s) A 1 Card(s) A+
7] | >
Ready MLIM i
Design Guide

174

Chapter 11 - Mapping Multiple Files to Multiple Files

In the functional map MakeDetailRecord, the RIGHT function is used to get the rightmost three bytes
of the PO#. The Description is mapped to the ItemID, the Quantity to the Qty, and the UnitPrice to

the UnitPrice.

2 Mercator Map Editor - E:\Design\Examples\TwoFiles.mms MakeDetail._. [l=] E3
File Edt “iew Map Card Bulezs Tool: ‘wWindow Help
e R 8 ¥ 5B E
B R A DY PR
:TIJ=R|GHT(PG#,3J —
4. From M= B e o]l
|“:LL:2 FO# (FO# Field Dat #1 DetailFecord (Detail Record Output C
#1 Detaill (Detail Input D Cutput Rule
;Im =1 DCetailRecaord
?----_lDeau:riptiDn Field | PO# Field =RIGHT [PO
~ | Oty Field 1 femlD Field =[escription |
1| City Field =Lty Field:De
2 UnitPrice Field =lnitPrice
3 Cardis) A 1 Card(s) Ad] =]
A | I
Ready LIk S
Design Guide

175

Chapter 11 - Mapping Multiple Files to Multiple Files

The resulting output files contain all the correct information from the two input files.

=r. Mercator Map Editor - E-ADesignAExamples\T woFilez.mmz ManyT oMany [ll[=] E3

| File Edit “iew Map Card Bulez Tool: Window Help
M2 E| S8 ¥ B
B RS EFW S W

.T_'.I.I =MakeHeaderRecord [Header..POFile) =
4 From M=l To o]~
. #2 POFile (File Input L | #2 DetailFile (Detail File Output Data)|
E! Inputitl CrozzReferenceFile - E:\Dezign‘ExamplesiUntPrice.txt [l=] E4
aaldt 5 60
aal97 .4 32
2a533,2 35
aal2z 2 25
Sl E! Inputlt2 POFile - E:\Design‘\Examples\POFile txt [H[=] B4
a
4500 POgl144 Jul-26-97 -
aalds. 10
EENEFSI Er Outputii] HeaderFile - E:\Deszign‘Examplez‘\hdrout.txt [=] E3
2000 4500 klr 144 Jul-26-97 -
25533 100 000 klr 175 QOct—-04-97
2a022 40 4500 klr 100 May—14-97
2a045.15 |5 Output#? DetailFile - E:\Design‘Examplesidtiout txt [H[=] E3
4500
L| a=011.10
—_—rer
4]
Feady

Design Guide
176

Chapter 12 - Arithmetic Functions and Operators

Chapter 12 - Arithmetic Functions
and Operators

This example uses the arithmetic functions SUM, COUNT, MAX, and ROUND, and the multiplication
operator *.

What You Want to Do

Suppose that you have a Header file and a Detail file, and you want to map these files to a Purchase
Order file. In the output PO, a trailer includes summary information about the items in the PO.

How to Do It

Define the output file in a type tree.

Create a map that has the Header and Detail files as inputs, and the PO file as the output. To map the
trailer, use the arithmetic functions and operators.

Files Used in this Example

The following table lists the files used in this example.

File Use
header.txt Use this data file, which was created in Chapter 10, Case 1, as input.
detail.txt Use this data file, which was created in Chapter 10, Case 1, as input.

twofiles.mtt This tree was created in Chapter 10.
math.mtt You create this type tree to define the output file.
new_pos.mms You create this map source file.

out_po.txt This output file is created by running the map.

Design Guide
177

Chapter 12 - Arithmetic Functions and Operators

Using the Type Editor

The input files were defined in Chapter 10.

F. TwoFiles. mtt O]

--Eiatliield {* Header File Input Data - 0] x|
= @ Input Header Recaord (s) -
@ Detailse] 11 —'I—I
E} @ Fil= Component Fule
@ Detail i|| Header Recard (s
-~ @ Header |® | Detail File Input Data =] 3
= @ Record .
@ Datail Detailset (s) =
‘. @ Header 14 _'I—I
= @ Output Cormponent Fule (5
- @ Detail =l DetailSet (s
@ File =] |Detail Record (1:s) |PO# 5 = PO# . §[LAST]
@ Header
oo PO PO#:.:$ = PO#.$[LAST] -
] |
Component Fule 4
=] |Detail Record (1:5) PO# 5=
L1 |PO#Field
L |temlD Field
O |Gty Field
1 |UnitPrice Field

Design Guide

178

Chapter 12 - Arithmetic Functions and Operators

The output file contains POs. Each PO contains a header, a series of details, a
data should look like this:

Define the output data in a type tree. In the PO, the header, detail and trailer b
“T.” Define these as Initiators.

Implied

Has a CR/LF terminator

E. MathMTT - O] x|

nd a trailer. The output

H 4500 144 Jul - 26- 97

D aa045, 10

D aa097, 25

T Total itenms: 2 Total cost: $164.00 Priority: Hi gh
H 7000 175 Cct - 04- 97

D aa533, 100

D aa022, 40

D aa045, 15

T Total itens: 3 Total cost: $384.50 Priority: Low
H 4500 100 May- 14- 97

D aa011, 10

T Total itenms: 1 Total cost: $69.00 Priority: Hi gh

egin with “H”, “D”, and

@ Data * File Data
- @ Cost
Dinitiator » @& Detail
B @ Field
@ File Cnmpgﬁent Rule
Hinitiator > & Header |#H[F0O 12
@ ltems
s @ Priori
T initiator > @ Trailg Header
JJ - Implied
Component Fule
£l|Header < Fixed
= [Detail (z) < Infix delimited with comma
£ | Trailer <« Fixed
Design Guide

179

Chapter 12 - Arithmetic Functions and Operators

The Trailer is made up the components Items, Cost, and Priority.

| Trailer Data mi=lE

[terms :
. ..
@ Data
@ Cost Component Fule
- @ Detail [:gerr:s
- @ Field j pﬁgm Text Field - «— Fixed
- @ File K b
- @ Header - Compaonent Rule
- @ [tems 1| Text Field
- E | |#tems Field
e
@ Tater _l' Text Figld -
] b
Companent Rule
|| Text Fiald
| |TotalCost Field
— [Text Field -
Er b
Component Rule
1| Text Field
| |Prionty Field

Design Guide
180

Chapter 12 - Arithmetic Functions and Operators

Using the Map Editor

In the executable map, the Header and Detail files are the inputs, and the PO file is the output. The rule
on the output PO references the functional map MakePO. The arguments to MakePO are a Header
Record, and the Detail Set whose index matches the index of the Header Record.

= Mercator Map Editor - E:A\Design‘\Examplez\Mew P05 _mms Executable M=l E3

File Edit “iew Map Card Bulez Toolz “Window Help
M2 8 ¥ B
BB RS AW L W

—":' =MakeP0 [Header Record:HeaderFile , il
1 From M=+ 1o = B
|#1 HeaderFile (Header File #1 OutputFile (File Data)
#2 DetailFile (Detail File Input Clutput Fule
;:|DetaiIFiIe =1 OutputFile
1----;:|DetaiISet (s £l PO (5 =MakeP O [Header B
;lbetail Fecard (1:5]
[IPO# Field
[temID Field
[Gty Field
[UnitPrice Field

2 Card(s) A 1 Card(s) R | =
1| |

Ready

Design Guide
181

Chapter 12 - Arithmetic Functions and Operators

In MakePO, the Header and Detail records are mapped as they are in Chapter 10.

Here are the map rules for the components of Trailer:

:J;%@E'Iéw%%l%“oi&d@lm@m

j=MakeDetail (Detail Record:Detailzet) ;l
#1 PO (PO Data)
Clutput Fule
=1 PO
=l Header
=l Detail (5] =MakeDetail { Detail Record: DetailSet
=l Trailer
=l [terms
| Text Field ="Total iterms:"
| #tems Field =COUNT [Detail Record:DetailSet)
=l Cost
] Text Field ="Total cost; §"
1 | TotalCost Fiel | =3UM [Oty Field:.:DetailZet * UnitPrice Field:.:DetailSet
=l Friarity
| Text Field ="Priority:"
| Friority Field |=IF { MAX (UnitPrice Field:.:DetailSet) = 4 |, "High" | "Low")
1 Cardis) [ElEl
Ready [NOM [

The #ltems field is mapped using the COUNT of the Detail Records.

The TotalCost field is calculated by taking the SUM of the products of Qty*UnitPrice. Then, it is
rounded to two decimal places, with the ROUND function.

The SUM function computes the sum of a series of objects. The syntax is:
SUM (Seri es whose sum you want)

The ROUND function evaluates a numeric Item. It rounds the number to the number of decimal places
specified in the second argument. The syntax for ROUND is:

ROUND (Numeric Item Nunber of decinmal places to round to)

Design Guide
182

Chapter 12 - Arithmetic Functions and Operators

The rule on the HighPriority field uses the IF function, and the MAX function, to see if the maximum
UnitPrice in the PO is greater than 4. If it is, the value for the HighPriority field is “Yes,” otherwise, it’s
“No-”

The MAX function returns the maximum value of a series of numeric objects. Its syntax is:
MAX (Number series whose nmaxi mum val ue you want)

After running the map, here are the results, showing the two input files, and the new output:

< Mercator Map Editor - E:ADesignAExampleziNew POS_mms Executable Mi=]

File Edit “iew Map Card Bulez Tool: wWindow Help
M2 n | 8 ¥HhE
BB RS AW P& W

Hl-pakePO [Header Record:HeaderFile =l

= =
4 _From =] 1 1o = B |
|#2 DetailFile (Detail File Inp #1 CutputFile (File Data)
#1 HeaderFile (Header File Ir Ciut Rule
ElHeaderFilg =1 Out

2l PO | =takePD (Header Record:

E! Input#1 HeaderRecord - E:\Design\Exzamplesiheader.txt [I[=] B4

4500 ke=sll 144 Jul-26-97

FS

7000 wewid 175 Oct—-04-97
4500 =brlhk 100 Maw-14-97 -l
sl E! Inputil? DetailSet - E:\Deszign‘Examplezidetail.txt [H[=] E3
144 aal4b 10 .60 "
144 aala?y 25 4 37
175 aabhid 100 2.3k
175 aalz? 40 2. 25
i7C ==NALC ic 3 70 ~|
Ef: Dutputifl PO - E:ADesignsExamplestout_po_txt M= 3
| H 4500 FO#f144 Jul-26-97 "

D a=045.10

D a=a097, 25

T Total item=s: 2 Total co=st: %164 00 Priority: High _J
Reacr - e |

Design Guide
183

Chapter 13 - Ignoring Invalid Data

Chapter 13 - Ignoring Invalid Data

This example shows how to define your data if you want Mercator to ignore invalid data.

What You Want to Do

You have a file containing your customer contacts. You want to map the customer data to a file that
gives a summary of the customer data. If Mercator finds an invalid customer record, you want Mercator
to continue mapping the data.

How to Do It

Define the input customer data in a type tree.
Define the output customer data in a type tree.

Create a map that maps the input customer data to the output customer data.

Files Used in this Example

The following table lists the files used in this example.
File Use

mycstmrs.mtt You create this type tree to define your input
customer data.

cust_out.mtt You create this type tree to define your output
customer data.

mycstmrs.mms You create this map source file to map the input

data to the output data.
names.txt Use this file as the input data file.
cust_out.txt This output file is created by running the map.

Using the Type Editor

You have an input file of customer contacts. The third customer record is invalid. The Age field is
supposed to be an integer, but it is a decimal number.

Design Guide
184

Chapter 13 - Ignoring Invalid Data

Dede, 1513 Pal ati ne Rd./Boca Raton, 252- 6560, 86
Lewi s, 74099 S. 67th Ave/ Ft. Lauderdal e, 332-8665, 3
Eric,6933 Main St./South M am Beach, 291-7281, 56

G sela, 1252 S. Broward/ Ft. Lauderdal e, 523- 2622,%651/Olata

3

Customer has the Restart attribute

E. Mycstmr. MTT

@ Data
- @ Address

- @ Age

- @ Contactlist ¥ Component

. _||E!.Cu5t|:|mer (s) | |

- @ Mame | J
- @ Phone ® Customer Data

Data that is Infix delimited
with commas () with a
CR/LF terminator

|
=

Component Fule
Marme
Address
Phone
Age

EoEE

When you want Mercator to ignore an invalid object, you assign the Restart attribute to that component.
You want Mercator to ignore any invalid Customer, so you assign the Restart to it.

To assign the Restart attribute to a given component, select the component, and then choose Restart
from the Component menu.

You want the output data to look like this:

custoners in Boca:
custoners in Ft. L:
custoners in Mam:
Total # custoners:

Wk R R

Define the output in a type tree:

Design Guide
185

Chapter 13 - Ignoring Invalid Data

The entire output Implied

/

1
__ Bl il =G CustomerSummary Data [l[=] E4

Fixed
@ Data / i
- @ #inBoca - I Fed
e LT + Boca Dot T (A
o inMien ffoes
- @ Boca o [Fi . b o
@ CustomerSummary | (= [Miami Companent : .
@ FiL | |Total o [Text I Compaonent Fule
@ Miami o [#nBoca | = 2
e = -
- @ [Tota - a
- @ TotCustomars K -
Component 3 ——Fixed
| Text L 4
Fixed —») [#nMiarmi Component Fule
| Text
|| TotalCustomer

Using the Map Editor

In the Map Editor, any component that has the Restart attribute has a red icon. There is a red icon on
Customer. The rule for calculating the number of customers in each city uses the EXTRACT and FIND

functions. For example, the rule on the output #inBoca counts the occurrences of Customers where the
text “Boca” is in the Address field:

= COUNT (EXTRACT (Custoner: Contact Li st,
FIND ("Boca", Address:.:ContactList) !=0))

The rule on the output Total#Customers is simply the COUNT of the Customers in the input:

= COUNT (Custoner: Contact Li st)

Design Guide
186

Chapter 13 - Ignoring Invalid Data

Customer has a red icon because it has
the Restart attribute

Morcalm Hap Edber - C: umsmcatod\E 3 amplexs pC chene mnx M pCoatomm s
B Edt Wi Mx Cod Buies Took | edo Help
NP8 8 ¥Yhe Bl es G L& 0
Bl COUNT | EXTRACT | Customer ComactLast B
| FIRD | Laackardalg® | Scddese Contacalist) =0 5] -
d] A —)
i Mg Souice Fles -
= [l Wy Csimors #1 ChriaiLes (ContncL ist Diata) b CusiomanSummeny |Cesiamars ummeny Date)
4 ‘r..‘vl:u:ll;lmrrs :l"-i"hl:ﬂ-l‘i' Cufpin =
ssiomer e =1 CustomarSummary
MMams = Buois
B Addmss B Tast =% CuzlaMmErs in
ElFhone 2 M-Bocs =CCLINT | EXTR
R =
B Test =" Cuslomers in
2 ¥=Frl =CCLNT [EXTH
B Fali
o Test ="# Cuslomers in
B Rebdia =COUNT [EXTR
B Tota
2 Teat ="Toisl & giom
B Tola#Custiamers =COUNT | Cusha
r -
Mol [02Comgaston] |, : " |'LI|_J
Fieady T

Because Customer has the Restart attribute, when Mercator comes across the invalid third Customer
record, Mercator will continue to validate the data.

Design Guide
187

Chapter 13 - Ignoring Invalid Data

= Meicater Map Edisn T imenc ol

pampler Myl atmis. meme Hy unlomer:

| Fe ES Yiew Mas [asd Bubs Took Wedos Hebp |

Jméﬂ @ ¥ E Bread A | Y P @

=0 INT (EXTRACT (CustomerContactList =]
| FIND ["Laudardalic® , Addass: -Cantactict) 1« 0)]

sl

R]~

L]

i M Sovrce Files
= [y Pty st
= @ W Cushman

[Coniactles (Comecilist Dais) |
Firatnrt 1

Al wample 0VH Amer @

bassls. 1454 5. Browsrd-Fe nderdsle b d-dindd

Dmde, 1513 Palstine Fd ~Boca Fston, 2EI-ESE0, 4&

Lawis, 74093 5. 67th Awe - Fit. Lauderdale 332-5665,3 3 s ewa s n

Eric.8933 Hain 5t -South Hiami Besch. 291-7291 E& NT { EXTR
19 Dl B C o oo 5 umvinai wLT e _ O] =
Custoesrs 1e Boca e marg
& Customers im Fu. L NT ¢ EXTR|
F Costcasrs 1m Hisms |

¥ curicasrs

=" Cuslorwais in

ITnu.J

=COUNT { EXTR

= Tl 51 @ ijgbam
=COUNT Cusio

o] ToiaeCusiomers

Al S] bt
Il-l

T WM

" Oust [* 1 Comeaston |

Fanzy

Notice that, even though there are two customers from Ft. Lauderdale, the third Customer—from Ft.
Lauderdale—is invalid. It is not included in the calculations in the output rules. For example, the total
number of customers is 3—because there were only three valid Customer records.

Design Guide
188

Chapter 14 — Mapping Invalid Data

Chapter 14 — Mapping Invalid Data

This chapter discusses the REJECT function, and shows you how to map invalid data to an Error file.
The example is a continuation of the example in Chapter 13.

What You Want to Do—Mapping Invalid Data to a File

You want to map the invalid data in the input Customer file to an Error Eeport.

How to Do It

In the Type Editor, define the Error Eeport. In the Map Editor, create an additional output card, to map
the invalid data. Use the REJECT function.

Files Used in this Example

The following table lists the files used in this example.
File Use

mycstmrs.mtt This type tree was created in Chapter 13.
cust_out.mtt This type tree was created in Chapter 13.
errors.mtt You create this type tree to define the error file.

mycstmrs.mms This map source file was created in Chapter 13.

names.txt Use this file as input data. It was used in Chapter 13.
cust_out.txt This output file is created by running the map.
errors.txt This output file is created by running the map.

Using the Type Editor

An error file is simply an output file. To define the invalid data, create a text Item that has a minimum
size of 0, and no maximum size.

The input data was defined in Chapter 13. Here is the input data. The third Customer is invalid:

Design Guide
189

Chapter 14 — Mapping Invalid Data

Dede, 1513 Pal ati ne Rd./Boca Raton, 252- 6560, 86
Lew s, 74099 S. 67th Ave/ Ft. Lauderdal e, 332- 8665, 3.
Eric,6933 Main St./South M am Beach, 291-7281, 56

G sel a, 1252 S. Broward/ Ft. Lauderdal e, 523- 2622, 224 Bad data

Suppose you want the error file to look like this:

These are the invalid custoners:

Lewi s, 74099 S. 67th Ave/ Ft. Lauderdal e, 332- 8665, 3. 3
Define the error file in a type tree. The Item “BadData” can be used to map an invalid customer. It is
defined as a text Item, with a minimum size of 0, and no maximum size. You define a series of

BadData(s) as a component of the ErrorReport—this way, each invalid customer will appear in the error
report. In this example, there is just one invalid customer.

Implied

l

E. Ermors. MTT * FrorReport Data _ (O] x| . .
| s T Text item, with a
& Data Component Rule double CR/LF
@ BadData 1 |Header <+— terminator
@) |BadData (s) <+«—— Text item,

o @ Header min = 0,
no maximum,
with a CR/LF

terminator

Using the Map Editor

To map the invalid data, you can simply add another output card to the executable map from Chapter
13.

To map the invalid customers to the output BadData, use the REJECT function.

The REJECT function evaluates a series of objects, of a type that has the Restart attribute. It returns a
series of text ltems—each of which is an invalid object. The syntax is:

REJECT (Series that has the Restart attribute)

Design Guide
190

Chapter 14 — Mapping Invalid Data

Use the REJECT function to map the
invalid Customers

= Meicater Map Edwas
 bie ES Mew Moo Dwd Huler Tooh fwecos Heip
2R & v DE SR ed 9T L 2|

Lmoe al o VE pampler'SpCalmia. mee Hellumlomor:

q- AF .E':*I':'.IFWEF Caontmciist) -]
J -
sl
i M Sovrce Files
= ‘T:lm': A1 Contactiei [ComectList Dals) | i1 CustomerSummery [CustomerSummeny 01
= @ WhCustomars El Contact {#2 EvmiFapon EnoiRapon Dat)
-_ Dt et Ruila
Etama) =] | EmuRepon
ol fodrees 2 Hoadiar ="Thesa am tha |
:IIT;H o) Badlala (&) =REJIECT [Curl
" qum [Ficansasan] |, e = o
Rinsd L

The resulting error file includes the invalid customer:

Design Guide
191

Chapter 14 — Mapping Invalid Data

Mercalon Hap Edibar

Fle Edt Yew Mo Cod fubes Took indow Hel |
MEH & ¥ E Bl ed N LS R

quEJELTiCuMﬂEum:IL:I: -]
=l
I8 e Source Fies : . ——r—
= lhﬁﬁim k- Inputii : kel . ' ton i zsmp --I n xt
k umale. Hrcwsrd-F i ucardsls S d-dkd
4 @ My Customers [ed=, 1517 Palatine Bd, ~Boca Fatan, 752-8560, 86
Lawin, P40%9 & E7th dwe Ft Lauderdsle. 313-B665.3 3 e
Eric, &5937p8 ST LANNTI et [i e i <Ol =
£ Cumteasrs in Bo=a 1 : ih
mFt| £ Custcamrs in P 1 1 A ie
4| £ Customers in Miswi 1 REJECT | Cuss
SAd Total # custowers 3
o gt B2 E o B egai i L mes i o L E waimpde 55 eiioid, i
These are the inwalid customsrs
Lavwis, 74089 5. 6Tth Awe, ~-Ft. Loudesrdsls . 332-8665.3.32
|
-F‘L- !n““ ll . . A . .l.:
Fusady [[l

Design Guide
192

Chapter 15 — Using Logical Functions

Chapter 15 — Using Logical
Functions

There are four examples in this chapter. Each example uses a combination of the logical functions OR,
ALL, IF, and EITHER.

Case 1 — Using the OR Function

The OR function evaluates a boolean expression about a series of objects. The OR function returns the
boolean TRUE if any evaluation of the expression comes out to TRUE, or the boolean FALSE if none
of the evaluations come out to TRUE. The syntax of the OR function is:

OR (Bool ean expression about a series of objects)

What You Want to Do

You have a file that lists the number of phone calls that were received at your company’s stores. You
have another file that lists the stores you are interested in collecting data for.

You want to generate a file that contains the calls for just the selected stores, and gives the total number
of calls for these stores.

How to Do It

Define the two input files and the output file in a type tree.

Create a map that has the Calls file and the Stores file as inputs, and the Summary file as the output.

Files Used in Case 1

Use these files, which you create as you work through this example:

File Use

calls.txt You create this file to use as an input data file.
stores.txt You create this file to use as an input data file.
stores.mtt You create this type tree that defines the data

Design Guide
193

Chapter 15 — Using Logical Functions

files.

stores.mms You create this map source file that contains
the map explained in this example.

summary.txt This output file is created by running the map.

Using the Type Editor

The stores data looks like this:

Store #1431

Store #1492

Store #1939

Store #1075 Delimited, with a
CR/LF terminator

'.' Data # StoreFile Data !EI-
- g CallRecord —_—

- @ CallsFile

= @ Field

- i@ #Calls

- @ Store

- @ StoreMame
- i@ Text

- i@ Text?

@

- @ TotalCalls
- @ SetOfCallRecords
- @ StoreFile

- @ SummaryFile

Ll | StoreMame Field (=)

Component Fule <«—4— Textitem with a

CR/LF terminator

In the Calls data, the first field in each record is the store number, and the second field is the number of

calls. The Calls data looks like this:

Store #1208, 500
Store #1939, 1020
Store #1488, 536
Store #1431, 750

Design Guide
194

Chapter 15 — Using Logical Functions

Implied

? Ctorez. MTT !EE

'I' Diata

o CaIIHecurd
- @ CallsFile
- @& Field

- @ #Calls
- i@ Store

- @ StoreMame

- i@ Text]

- @ Textd

- @ Textd

- @ TotalCalls

- SethCaIIRecnrds

e

- @ SummaryFile

& 5 toreFile Data

Component

1 |StareMame Field (s ° Delimited with ,
and with a CR/LF

terminator

The output data should look like this:

Calls at Selected Stores

kkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkikkhkikkhkhkhkhkh*k

Store #1939, 1020
Store #1431, 750

TOTAL NUMBER OF CALLS: 1770

Design Guide
195

Chapter 15 — Using Logical Functions

@ Data Component Rule
- @ CallRecord | Text! Field
o C.aIISFiIe || Text2 Field
- @ Field £l [SetOfCallRecords
- @ #Lalls 2| Text3 Field
-~ @ Store =) [TotalCalls Field |
@ StoreNam T]
@ Text? Companent Fule <
@ Textl | CallRecord fs) =
@ TotalCalls
- @ SetOfCallRecords
. Component Fule
- @ StareFile 21 [Store Field
- ore Fie
@ | |[#Calls Field

Using the Map Editor

You do not need a functional map, because the CallRecord in the input is exactly the same type as the
CallRecord in the output. In the map rule for CallRecord, use the OR function, to map only the
CallRecords whose Store field matches the StoreName field in the stores file.

The map rule for CallRecord is:

= IF (OR (StoreName Field:Stores = Store Field:.:CallsFile),
Cal | Record: Cal I sFi | e,
NONE)

Design Guide
196

Chapter 15 — Using Logical Functions

= Mmicater Map Edesn T imocaloVE panpler S lores. mma Cala Summaiy

|Ele ES Mew Moo Lad Huler Tooh Weekss Help |

DR & VDR SR ED Y P& 0

-’- F [OF. Stomefame Fiold Stoees = Siom Fedd CalsFile], H
BEY [o | [
LB Map Sorrce Files e
= i Stores #7 Eorers [BonaFile Dala) |,|-| Surmenay [Sumnmandle Dain)
7 @ CalsSunnmany [#1 CalisFile (CalisFile Daim) Ouiipu Rl
<1 @ Completel sl ElCakFik I;| Swmmary
- i HEW_FPHOME_LE = B Taxtl Fild ="Calls st Sakicted Sioees”
@ Muns e iCaleRa e B Texiz Field s
HCal: Fisld B SetfCallRacor

& CalRecond [5) [=F | OR [SiesMass Figld &
B Text3 Fieid = TOTAL HUMSER OF Call
| TelalCals Fild =5UM [#alk Fid . Summs

41| 2] "
" ezyst [*1Comeasiton 4] = | _*I'ﬂ
Fianzy T

Design Guide
197

Chapter 15 — Using Logical Functions

The results include only the stores that are found in the Stores file:

= Meicater Map Edesn C\moc aleVE samples S lores. mma Calla S ummaiy

Bt ESl Vien Mas Casd Auber Tooh Wirekss Help
BaR 84 ¥ 6 Bea 2L N SfE0 -?|

ﬂ* F | QR StoreMeme Fisld Sioess = Siom Field - CaleFie |, H
|,‘Hn|: S Files Stare £1471
- i Sores Store £1492 [Bem
.-..’c 155 - Store F1939 P‘Su . muryFie Daln)
el rmineay Staore FI07S Ol ot Rule
<1 @ CamgplsteList =1 Summary
T i NEW_FHOME_LIF 1) bngut Bl CallsFile - C:\mmcalodE. =T ="Calls &l Sakicted Sloees”
% @ HungeiCald=a Stexm £1208 . 500 I TICISTICISTIRTITITITIE
[o.| Store £193% 1020 "
Stors #1498 L6 =
Skorm F1ETL. 7RO 8] [=F { QR [Blorshlasm Figld 5

=TT Rl WiISED OF Call
15 Dutputd] S usesargp CimocaleEramgl . [MEE Summi
Calls at Selected Siores

LR LR L]

Store FLF3I9, 1020
Stora FL4Z1. 750

TOTAL HUMHER OF CALLS: 17%0

4] | |
“ha Lt |i|¢li|"'-:|“:ln| m - I b'
T

Case 2 — Using the ALL Function

The ALL function evaluates a boolean expression about a series of objects. The ALL function returns
the boolean TRUE if all evaluations of the expression come out to TRUE, or the boolean FALSE if any
evaluation of the expression comes out to FALSE. The syntax of the ALL function is:

ALL (Boolean expression about a series of objects)

What You Want to Do

Suppose you have a file that rates the volume of phone calls to the different stores in your company,
over a number of different dates. The volume for each store is rated low, medium, or high.

You may need to install new phone lines in a store, if the volume of calls is consistently high. So, you
want to generate a file that lists the stores that have a rating of “high” for each date.

Design Guide
198

Chapter 15 — Using Logical Functions

How to Do It

Define the input and output file in a type tree. Create a map that maps the input file to the output file. To
map a store name to the output, use the ALL function, to determine if the store’s volume was
consistently high.

Files Used in Case 2

Continue working with the map source file created in Case 1. You need to create the input files,
containing the data described in the following topic, “Using the Type Editor.”

File Use

volume.txt You create this file to use as an input data file.

phncalls.mtt You create this type tree that defines the data files.

stores.mms You modify this map source file, which was created
in Case 1, to include the map for this example.

newlines.txt This output file is created by running the map.

Using the Type Editor

The input data looks like this:

Store #1075

09/ 07/ 97 hi gh
09/ 22/ 97 hi gh
09/ 30/ 97 medi um
Store #1939

09/ 10/ 97 hi gh
09/ 23/ 97 hi gh
09/ 29/ 97 hi gh
Store #1208

09/ 01/ 97 medi um
09/ 12/ 97 | ow
09/ 26/ 97 medi um
09/ 30/ 97 | ow
Store #1005

09/ 02/ 97 hi gh
09/ 07/ 97 hi gh

This Volume file is made up of a series of Storelnfos.

Design Guide
199

Chapter 15 — Using Logical Functions

& Dﬂtﬂ_ Companent Rule
- @ Field | Store Info (s | «—
@ Dat ; ' '
B
- @ Stored Component Fule
-~ @ Yolume 1| Store# Field <
- @ Stare_Info &1 |olumeRecord (s) -« Fixed
il
- & YolumeFile T ——
@ Component Fule '
)| Date Field < Fixed
| %olume Field < Fixed

Your output should look like this:
W need new phone lines in the follow ng stores:

Store #1939
Store #1005

The Store Info file is made up of a Store# field and Volume records.

= @ Field
@& Date
- @ Heading
- @ Stores
~ @ Vaolume
- @ Store_|nfo
- @ StoreFile
- @ “YolumeFile

F. PhnCalls MTT # Store_Info Data M=l E3
'-' Data

- @ WolumePRecord

Postfix delimited with CR/LF

Component Fule

Store® Field
“olumeRecord (=)

=l

Design Guide
200

Postfix delimited with CR/LF

Has initiator “Store #”

Chapter 15 — Using Logical Functions

Using the Map Editor

In the map, you want to map the Store# field if all of the Volume fields for that store contain the value
“high.” To do this, use the ALL function.

The map rule for Store# field is:

= IF (ALL (Volune Field:.:VOLUVE_FILE = "high"), Store#
Fi el d:.: VOLUVE_FI LE, none)

The executable map looks like this:

= Meicater Map Edts - Cimenc ol VE samples\ S loees mma HEW_PHOME_LIHES
|Ele ES Mew Moo Lad Huler Tooh Weekss Help
e & ¥R SR Ed FTYF P& T
== FALL { Waolme Feld: SWOUBEE _FILE = "high®) =]
Siworad Fiald VOLLUKME_FILE | .I
=l
i Map Eowrcs Files
= [y Stores #1WOLUME_FILE MolumeaFile Daia) [F1 HEW_LNE_FILE (EtoreFila D)
= i CalsSummary EWTLUKME_FILE Cuslput Rula
A @ Comgkel il =l Siome_inlo (5] = NEN_LNE_FIL
= @ HEW_PHOME_LE = Baoref Fiakd 8| Heading Field ="We need new phane Ines n
3 @ HumbaniCalsFRe o Sioee¥ Fiedd [2) [=IF [ALL { Vaoking Fesald 0L
DD Fiald
Al volures Fiskd
4] | L]
Tlist |*3Comgastan | |0 | _pIﬂ
Fanss L.
Design Guide

201

Chapter 15 — Using Logical Functions

The results show that Mercator mapped only the stores that had the rating “high” in every Volume field.

= Meicater Map Edts - Cimenc ol VE samples\ S loees mma HEW_PHOME_LIHES

Bt ESl Vien Mas Casd Auber Tooh Wirekss Help
BaR 84 ¥ 6 Bea 2L N SfE0 -?l

= [ALL (Wohime Freld: WOLUME_FILE = *higs®) =
Siworad Fiald VOLLUKME_FILE | -I
]
i Map Eowrcs Files = -
S iy Stores LIRS 2| || [y HEW_LrE_FRE (StoreFile Dam)
= @ CalsSummany UE';”E;__;;:'?E high Cudput Ruk
-] ’r.'llll:ll-‘l-l.l-nl_ 092217 high = HEW_LNE_FIL
= @ HEW_PHOME_LE g?;ﬂ :;'33_3] 8| Heading Field ="We need new phane Ines n
% @ HumbeiCalaRa 15-10.-97 high Sl Siosed Fiedd [5) |=IF [&1L Vokjime Faki VOl
0372337 high
04 2097 high
Store FLZDE
1%<01-97 wisil L am
0941297 Low
092697 A
093097 L
Etora FLODDS
13-02-97 hiighk
030797 higk
B Dulpst®] MEW LIME FILE
i nesd nea phone lines in thes folloving stores
Stores F1539
Store F1005
2L 2 R -
- 5 -
“gust [* 2 Comgaston | | I |
Fiancy TR [

Case 3 — Using the EITHER Function

This example uses the EITHER function to map different data if an object evaluates to NONE.

What You Want to Do

You want to generate a file that lists all of the stores in the Calls file, and indicates whether or not the
store is listed in the Stores file.

How to Do It

Define the output data in a type tree. Create a map that maps the stores and calls data to the output file.
Use the EITHER and LOOKUP functions to determine if a given store appears in the Stores file. If the
store does not appear, put the text “Not in our stores list.”

Design Guide
202

Chapter 15 — Using Logical Functions

Files Used in Case 3

This example uses the map source file, the type tree, and the input data files created in Case 1.

File Use

stores.txt Use this file, created for Case 1, as an input
data file.

calls.txt Use this file, created for Case 1, as an input
data file.

stores.mtt Use this type tree, created in Case 1, for both

input and output types.

stores.mms You modify this map source file, which was
created in Case 1 and modified in Case 2, to
include the map for this example.

list.txt This output file is created by running the map.

Using the Type Editor

The output data should look like this:

Store #1208 Not in our stores |ist
Store #1939
Store #1488 Not in our stores |ist
Store #1431

This example shows how you can reuse types for many sources and/or destinations. The output type is
the same as the type of one of the input cards—StoreFile.

Using the Map Editor

You want to map a store name if it is present in the Stores file. If it is not present in the Stores file, you
want to map it, and add the text “Not in our stores list.” To do this, use the EITHER function.

The EITHER function has two arguments. If the first argument evaluates to a value other than NONE,
the result is the first argument. If the first argument evaluates to NONE, the result is the second
argument. The syntax of the EITHER function is:

EITHER (Expression, Expression)
The map rule for Store field is:

= EI THER (LOCKUP (St oreNane Field: Stores,

Design Guide
203

Chapter 15 — Using Logical Functions

StoreNane Field: Stores = Store Field:.:CallsFile),
Store Field:.:CallsFile + " Not in our stores list")

The map looks like this:

The output type is StoreFile
The input type is StoreFile putyp

= Meicater Map Edin C imerc ol VE samples' S lorer. mma Completelmt

| Fe E&t Yeew Mo [asd Hubr Tooh Wiedes
ae & v RE e ed G S0 2

Sl -ETHER (LODKLP [Storetame Field Stores =]
EwraMEme Fedo Bones = Sioss Figld: CalleFila)
J Stors Field. CalleFile « * Motin cyr fiones el -I
Zl=l
i Map Eoucs Files
- ‘ElI:IIE'S F2 Sionas (oto ek Dans) [T CompdataLisi [SieaFils Deis)
= i CalsEurmmerny 1 CaleFie [CaleFile D) Cuiput Hula
a 'l-.:'ll'll:'lhl'-llhl- =iCalzFia =l C el L)
= @ NEW_PHOME LY EIfaiFacon (5] B | Stovetame Fied [=ETHER | LOCKUP | Soraba
= @ MunsarioiCalsFa 2 5eoee Field
LTl Fiabd
4] | L]
St [*1Comgasion | | " _,'ﬂ
Fancp T THUH |

Design Guide
204

Chapter 15 — Using Logical Functions

In the output data, the stores that are not in the Stores file are indicated as such.

= Meicater Map Edesn T \moc aleVE samples S lores mma Completelnm

Bt ESl Vien Mas Casd Auber Tooh Wirekss Help
BaR 84 ¥ 6 Bea 2L N SfE0 -?l

Bl -EITHER (LODKLIP | Storehisme Field Siores B
Ewraleme Fisld Bones = Siora Field: ‘CalleFila)

Sors Fiesld . CalleRla « ™ Mol in ourstores il -

= D —

Ll Map Eorce Fis

- iy Stores 2 cin Ll [SioeaFile Datn)
!’ @ CalsSummary GicRi| Store #L208,500
= Stope F1939,1020 Chtput Hula
i i Congketel i SiCal| Stors FL4DI 530 CorsplelaLin)
= i) NEW_PHOME_LE g Sterw SAIL0 Sreehiame Fied [=ETHER | LOOKUP | Sxorabia

= @ HumbariCals s M=K

Shore £14371
Shore 1493
Storm £1939

Suaze £1075
B DeatpiitB 1 IC ol el it CmoicalodExa .. M= E
— tore #1I0E Hot in OUF Stores List
Stors #1915
Stcre FIAFE Hot in cor stores Lust
Sticowm #1431

" ezyst [*1Comeasiton I _*I'ﬂ

Foanp I

Case 4 — Using Nested IF Functions

In this example, you use nested IF functions to determine what data should be generated.

What You Want to Do

You want to generate a file that tells whether the number of calls at a store is low, moderate, or high.
The Calls file is the input.

How to Do It
Use the type CallsFile as the input file, and StoreFile as the output file.

Create a map that maps the Calls data to the StoreFile. To map the rating of the number of calls—not
many calls, a moderate amount, or a high number of calls—use nested IF functions.

Design Guide
205

Chapter 15 — Using Logical Functions

Files Used in Case 4

This example uses map source file, the type tree, and the input data files created in Case 1.

File Use
calls.txt Use this file, created for Case 1, as an input data file.
stores.mtt This type tree was created in Case 1.

stores.mms You modify this map source file, which was created in Case
1 and modified in Cases 2 and 3, to include the map for this
example.

ratings.txt This output file is created by running the map.

Using the Type Editor

Your output data should look like this:

Store #1208 not nany calls

Store #1939 hi gh nunber of calls
Store #1488 not nany calls

Store #1431 noderate anount of calls

Using the Map Editor

In the map enter a rule for StoreName field. Map the Store field from the input, and then use nested IF
functions to indicate “not many calls,” “moderate amount of calls,” or “high number of calls.”

Design Guide
206

Chapter 15 — Using Logical Functions

= Meicater Map Edesn T \moc aleVE samples S lores mma Completelnm

B ES Yew Mao Cosd Huksr Tock Windes Heb |

MBS E & FmE Bad | B P -a'|

=EITHER { LOOKLF | StomeiMame Field Stomes |
J EwraNema Fedd Erores = Siona Field: CalleFila)
[Map Eource Fics

Sors Feld . CalleRle « ™ Mol in cur stones el |

sl

= [y Stores Lt [StoeaFile Dain)
= i CalzEummeary Cutpus Hula
% @ Cangistelis corpkislisl [
= i NEW_PHOME_LE Streehizme Fiel [=ETHER | LOCHUP | Sorabia

= i MursarioiCalcFs

Srore £14391
Shore 1493
Skorw £1939
Svaze £1075

B Dwiputl] Compleisliai L umeicaloisE xa.. W E3

——|| Erore #120E Hob in OUF Stores List
Stors #1915
itore FLABE Hot in cor stores Lust

Sticom F1431
“gum [*1comeasian] || " _*Iﬂ
Fassy T TR

Design Guide
207

Chapter 15 — Using Logical Functions

In the output, you can see that each store has its appropriate rating.

= Memicater Map Edetsn T \mocaleVE ranpler ' S lores. mma Busba{iCalhf alng

Fe Ed ew Mao [osd Huer Tock Weckss Help
| |
Jﬁhéﬂ @ ¥R Bad 2L NG| PR

=Zinne Fiekd CalksFilke + ;I
A F (el Fadd CalsFile < B30
* o A Calle®
F [#Cells Fazld: :CalleFie b= 800 & Moals Field . CallsFile < 1000
* madereste surber o cals®

* high numsr of palle®)) =|
=E .
[Mep Souce Fics
- iy Stores ks Fesfing (Sicra Fike Date)
! i CalsSummarny #limy. 3 . = e
#1938, 1020 zu LU
3 i Coingletal bl £142E 53% aleRalin
= ‘hE“'—F HOME_LE Store #1471 750 Fiedd 151 = Sime Fald - alleF e +

5 i HurbaiiCalsFa

#1008 not many callx
#1938 high nisbesr of calls
Store #1458 not m»any colls

afore F140]1 scdsTste nusber of calls

41 | +]

Tlist |*3Comgastan | |0 ‘ ‘H I _*I'ﬂ

Fansy I

Design Guide
208

Chapter 16 — Incrementing Output Data

Chapter 16 — Incrementing Output
Data

This chapter shows three methods of incrementing the position of an output object. Each method uses
one of the following—the INDEX function, the COUNT function, and the index [LAST].

What You Want to Do

You have a Header file and a Detail file, which you want to map to a PO file. In the header of each PO
in the output, there is a field whose value increments by one for each PO. In the first PO, it has the value
1, in the second PO, it has the value 2, and so on.

Case 1 — Using the INDEX Function

In the first example, you use the INDEX function to index the output.

How to Do It
In the type tree, add the IndexOfPO field to the definition of the header.

In the map rule for PO, use either the INDEX function, the COUNT function, or the index [LAST] to
increment the output.

Files Used in Case 1

This example uses input data files created in Case 1 of Chapter 10. The type tree file and map source
file must be created for this example.

File Use

header.txt Use this file, created for Case 1 of Chapter 10,
as an input data file.

detail.txt Use this file, created for Case 1 of Chapter 10,
as an input data file.

incrmnt.mtt Open the type tree twofiles.mtt, created in
Chapter 10, and save it as incrmnt.mitt.

incrmnt.mms You create this map source file for use in the
examples in this chapter.

Design Guide
209

Chapter 16 — Incrementing Output Data

incrmnt.out This output file is created by running the map.

Using the Type Editor

Open the type tree twofiles.mtt, created in Chapter 10, and save it as incrmnt.mtt. Then, add a field
called IndexOfPO, and define it as an integer. Make it the last component of Header.

The field types and components in your type tree should look like the following:

E. Incrmnt. mtt =

@ Data

= @ Field

- @ Accountd
- @ Company
- @ Customer#
- @ Description
- @ |ndexOfF0
- i@ [temlD
- i PO
- @ PODate
g Qt}-"

- @ LnitFrice
- i Input

I3l

+1

Using the Map Editor

The INDEX function returns the position of an object in a series. For example, the first object has the
index of 1. The second object has the index of 2. The syntax of the INDEX function is:

INDEX (Object whose index you want)

In the map rule for the output PO, you reference the functional map MakePO. There are three arguments
to this map. The first two are the same as they are in Chapter 10. The first is the Header Record, the
second is the DetailSet that has the same index as the Header Record. The third argument is the index of
the current output, that is, the index of PO. The index of the first PO is 1, the index of the second PO is
2, and so on. To indicate the output PO, use the shorthand notation “$”.

Design Guide
210

Chapter 16 — Incrementing Output Data

=MakePO[Header Record:HeaderFile,
CHOOSE([DetailSet:DetailFile, INDEX] Header Record:HeaderFile]).

INDEX[S])
To Cok
| #1 HeaderFile [Header File Input #1 POFile [File Output Data)
#2 DetailFile [Detail File Input Da Qutput Rule
=1 DetailFile =l POFile

L=y DetailSet [s

= | PO [s) =MakePO[Head

—1 PO# Field
2 ItemlD Field
= Oty Field

—1 UnitPrice Field

=
1] | 3

In the functional map MakePO, the third input card is mapped to the IndexOfPO output.

=Increment
i From o [=] B To I [=] A |
| #2 DetailSet [DetailSet Input D4 #1 PO [PO Output Data)
| i1 HeaderRecord [Header Recqd Output Rule
#3 Increment (IndexOfP0O Field = PO
m = Header
= | Company Field =Customer# Fie
—1 | PO# Field =PO# Field:Hez
=1 | PODate Field =P0Date Field:
|| 2 | IndexOfPO Field =Increment |
|| = Detail [s) =MakeDetail[D
| 3 Cards || 1 Card ai|
| Ready

In the output file, the IndexOfPO increments by one for each PO.

Design Guide
211

Chapter 16 — Incrementing Output Data

|=MakeP0[Header Record:HeaderFile,ll

CHOOSE[DetailSet:DetailFile, INDEX[Header

& Input #1 header. txt O] <] i = O] =] I;

4588 kesll 144 Jul-26-97
70080 weu2B 175 Oct—-04-97 . .
4588 shri5 1688 May-14-97 |#1 POFile [File Qutput Data)
=l & Input #2 DETAIL TXT _[Olx] | Output Rule
ig: ::g;g ég g'gg & Dutput #1 incrmnt.out = E
175 aa533 1688 2.35 144 Jul-26-97 1
175 aaB22 48 2.35 aab45.18
175 aaf45 15 3.78 aaf@?? .25
188 aadil 18 6.98
175 Oct—-A4-97 2
aab33.188
aa@2? .40
aaf45 .15

aafll.18

188 May-14-27 3

2 Cards Sl L

1 Card]l -

| Ready

Case 2 — Using the COUNT Function

You can use the COUNT function instead of the INDEX function. If you count the number of POs that
have already been created in the output, you have to add 1, to include the current one. When Mercator is
creating the first PO, the count of PO is 0, so you add 1 to make it 1. When Mercator is creating the

second PO, the count of PO is 1, so you add 1 to make it 2, and so on.

Files Used in Case 2

Use the same type tree, map source file and input data files as those used in Case 1.

Using the Map Editor

The only difference between this case and the previous case is the third argument of the functional map
MakePO, which is COUNT($) + 1.

Design Guide
212

Chapter 16 — Incrementing Output Data

=MakePO[Header Record:HeaderFile,
CHOOSE(DetailSet:DetailFile, INDEX[Header Record:HeaderFile] ,COUNT(S] + 1]
& Input #1 header.txt I =] 2
4500 kes1l 144 Jul-26-97 [- |O] =]
780 wev2B 175 Oct—A4-97
4588 shrlb 188 May-14-97
[#1 POFile [File Output Data)
B nput B2 DETAIL TXT M=k
144 aa@4b 10 5.60 Output Rule
144 aa@97 25 4.32 OFile |
175 aab3l 188 2.35 = =
175 aa@22 48 2.35 & Dutput #1 incrmnt.out [_ (O] =]
175 aa@4h 15 3.78 4cpp 144 Jul-26-97 1
168 aaBii 18 6.98 aa@45.18 .
aal@9?,25
7a88 175 Oct—-@4-—97 2
aad33.1088
aa@22,.4n
aa@45,.15
45808 18@ May-14-97 3
aa@ll.18 s
[2 Cards] TI -
| Ready

Case 3 — Using the Index [LAST]

Another way to increment data is to take the index of the last IndexOfPO in the output, and add 1. When
Mercator is creating the first PO, there is no IndexOfPO yet, so the index of the last one is 0. You add 1
to make it 1. When Mercator is creating the second PO, the index of the last IndexOfPO is 1. When you
add 1, it is 2.

Files Used in Case 3

The files used are the same as those used in Case 2.

Using the Map Editor

The output IndexOfPO is nested within the PO. When referring to IndexOfPO, you do not have to enter
the full object name. You can refer to the field in the entire card. The third argument of the functional
map MakePO is IndexOfPO[LAST] IN POFile+ 1.

Design Guide
213

Chapter 16 — Incrementing Output Data

=MakePO[Header Record:HeaderFile,

CHOOSE[DetailSet:DetailFile, INDEX[Header Record:HeaderFile]],

IndexOfP0O Field[LAST] IN POFile + 1]

8 Input 1 header it o (L

45808 kesll 144 Jul-26—-27
70806 wev2B 175 Oct—-A4-97
4588 shrilb 188 May-14-97

POFile [File Qutput Data)

Qutput Rule

& Dutput #1 incrmnt.out

=] E3

& Input #2 DETAIL TXT - |Ofx] 4500 144 Jul-26-97 1
144 aaf4h 18 5.6@ aaf45.1@
144 aad?? 25 4.32 aa@??,.25
175 aab33 188 2.35
175 aa@22 48 2.35 7aea 175 Oct-B4-27 2
175 aaf4s 15 3.7a aa333,.1688
188 aadii i8 6.9@ aa@22, 4@
aaB4% .15
4588 188 May-14-27 3
aali1.1@ -
L e | il
1 | >|
| Ready
Design Guide

214

Chapter 17 — Retrieving Information from Other Applications

Chapter 17 — Retrieving Information
from Other Applications

Using the EXIT Function

The EXIT function sends a text or bytestream Item to a function defined outside of Mercator, and
returns a text or bytestream Item. The EXIT function is platform-specific. For the Windows engine, the
EXIT function requires the first argument to be the name of a DLL, the second to be the name of a
function in the DLL, and the third to be the input Item. The example that follows uses AnsiUpper—a
function that receives and returns only a text Item.

It is important to remember that the EXIT function requires that the DLL function you call have only
one argument. It returns a text Item. The DLL must be written to specific requirements. For an
explanation of these requirements, see the description of the EXIT function in the Functions &
Expressions Reference Guide.

Files Used in this Example

In this example you use a DLL that comes with Windows (either user.dll or user32.dll), and a test DLL
(mydlIl.dll or mydl132.dll). So, if you have a 16-bit environment (Windows 3.1), you use mydll.dll and
user.dll. If you have a 32-bit environment (Windows 95 or NT), you use mydII32.dll and user32.dll.

The files for this example can be found in your mercator\examples\general\exit directory. User.dll or
user32.dll is in your system directory (or folder).

File Use

mydll.dll or This DLL, which is the first argument of one
mydl132.dll EXIT function, converts the text to alternating
upper and lowercase letters.

user.dll or This DLL, which is the first argument of the
user32.dll other EXIT function, converts text to all
uppercase characters.

exit.mtt This type tree file defines the output data of the
map.
exit.mms This map source file contains the map that uses

the EXIT function to generate data.

exittest.out This output file is generated by running the

Design Guide
215

Chapter 17 — Retrieving Information from Other Applications

map.

Understanding the Map

The map example has one output card, and no input cards. The output has two text Item components.
The meaning for the EXIT function in a Windows environment is:

EXIT(application_name, application_function_name, input_to_the_function)

Note The map to run for the 16-bit Windows environment is Exit_Example. For the 32-bit Windows
environment, the map is Exit_Example32. If you attempt to run the map for the other environment, you
get errors.

For the 32-bit environment, the map rules on the two components are:

=EXIT(“nydl 1 32.dl 1", “Alternate”, “Watch what happens to this
data.”)
=EXI T(“user32.dl ", “AnsiUpper”, “this was | ower case.”)

The rule on the first component calls mydl132.dll, which converts the text to alternating upper and
lowercase letters. The rule on the second component calls user32.dll, which converts the text to
uppercase.

=EXIT('mydlI32.dII","Alternate"," ¥ atch what happens to this data."]

=0 - 10—
#1 Qutput [Test Words]
Output Rule
= Output
2 | UpDownCase =EXIT["mydII32.dII1
—1 | UpperCase =EXIT['user32.dII'",

a Output #1 Exittest out _ | O] x|

wAtCh wHaT HaPpEnS To tHif DaTa.»THIS WAS LOUER CASE.

4| 2

=
4 | 3

| Ready

Design Guide
216

Chapter 17 — Retrieving Information from Other Applications

Using the DDEQUERY Function

The DDEQUERY function allows you to interface to other DDE enabled programs (Excel, Trading
Partner PC, Word for Windows, etc.). When you use DDEQUERY, you tell Mercator to ask a particular
program to provide information from a specific area of a selected file. Each program with this ability
requires that you ask for the information in a specific way.

In general, the DDEQUERY function uses these arguments:
DDEQUERY (program topic, item)

For example, a DDEQUERY function to retrieve data from Excel may look like this:
DDEQUERY (“excel ”,”[MyDat a. xI s] Sheet 1", " R1C2: R2C5")

A request to Trading Partner PC could look like this:
DDEQUERY (“t ppc”, " Partner X', ” BGyour EDI Code”)

In both cases you supply the name of the program that you want to communicate with, a topic, and an
item. The topic, which is the second argument, is the topic of the “conversation”. In the Excel example
you see that the topic is some file, MyData.xls and, more specifically, sheet 1 of that file.

Note The executable program file must be in your DOS path. You cannot enter the full path name of
the program for the first argument of the DDEQUERY function.

The software you are retrieving information from determines the syntax of the second argument. It
should be found in the documentation for that software.

The third argument is the specific information that you want to obtain. You are asking Excel to provide
all the data in the block R1C2 to R2C5 from Sheetl of MyData.xls. R1C2 stands for Row 1, Column 2,
and R2C5 stands for Row 2, Columnb, or the block B1:E2. From Trading Partner PC (the program
tppc), you are requesting the BG EDI Code from Partner X.

DDEQUERY is a powerful function—enabling you to retrieve exactly the data you need.

Design Guide
217

Chapter 17 — Retrieving Information from Other Applications

Note The application you interact with must be running while your map is running. In addition, if you
use a DDEQUERY to a particular file in that application, that file must be open. If a DDEQUERY
function is encountered when running a map, and these conditions are not met, then another instance of
that program may be started.

For example, if you have Excel open, but with a worksheet other than MyData.xls, the DDEQUERY
may start Excel again, resulting in two Excel sessions going at the same time. You could quickly run out
of memory if you continually attempt to run the map.

Files Used in this Example

The files for this example include the Excel spreadsheet mktprice.xls. These files are in your
mercator\examples\general\ddequery directory (folder in Windows 95).

File Use

mktprice.xls Open this spreadsheet in Excel when you run
the map. This spreadsheet file contains data
that the DDEQUERY function requests.

invtory.mtt This type tree file defines the output data of
the map.

inv2txt.mms This map source file contains a map that uses
DDEQUERY in a map rule. When the map is
run, it uses input retrieved from the Excel
spreadsheet to generate output.

pricelst.tmp This output file is created by running the
map.

Understanding the Map

Suppose that your company, Mercator’s Fresh Fruit and Open Air Market, keeps the inventory in an
Excel spreadsheet. In the spreadsheet are each product name, its price per pound, the quantity of each,
the total pounds in stock, and the total market value. You need to send some of this data with other
monthly reports to the main office. The problem is to transform the spreadsheet data into a text based
format so that you can transmit it with the rest of your information in a predefined format. Here is the
Excel spreadsheet:

Design Guide
218

Chapter 17 — Retrieving Information from Other Applications

ﬁ Eile Edit “iew Insert Fomat Tools Data Window Help ;lilﬁl

sl= = e A E R R s R A A Y N 1 |

[Aa i = elz|u]| =|==l8 8], @l =]
M7 =] |

A | B | c | b [E [F | 6 | H [T

-

Mercator's Fresh Fuit and
Dpen Air Market

Product Unit Price Quantity | Total Price
(perLb.) (lbs)

~=l=l=|==

apples 0.54 B32 341.25

cabbage 0.23 254 55.42

corn 017 387 65.79

grapes 1.89 120 2268

oranges 0.48 223 102.58

peas 07 45 35

squash 0.14 430 B0.2
16 |[TOTALS 413 2091 866.57
17 i
7 ¢
4| 4] ¥ | M Sheetl / Sheetz 7 Sheetd £ Sheetd 7 Sheets £ St |4 el |
Ready | [Sum=0 [[=

You want to map the first three columns of the spreadsheet—the Product, Unit Price and the Quantity.
You want to map the main data to Full_Chart Item, and the TOTALS row to Totals Item. You use the
DDEQUERY function to retrieve the required data from the rows and columns from the spreadsheet.

=DDEQuery ['excel", "[MKTPRICE.XLS]Sheet]", "R16C1:R16C3")
re mEEs

#1 Report [record Prices]

Output Rule
= Report
2 | Full_Chart ltem =DDEQuery ['exce
2 | LineDelimiter Item Sttt
2 | Totals ltem =DDEQuery ["exccl

-
< | »

‘ | Ready

The DDEQUERY for Full_Chart Item retrieves the block of data from row 8, column 1 through row 14,
column 3, (in Excel’s default nomenclature, block A8:C14). The map rule is:

=DDEQuery ("excel", "[MKTPRI CE. XLS] Sheet 1", "R8Cl: R14C3")

Design Guide
219

Chapter 17 — Retrieving Information from Other Applications

The DDEQUERY for Totals Item retrieves the block of data from row 16, column 1 through row 16,
column 3, (block A16:C16). The map rule is:

=DDEQuery ("excel", "[MKTPRI CE. XLS] Sheet 1", "R16Cl: R16C3")

When you run the map, you get the expected data:

=DDEQuery [“excel", "[MKTPRICE.XLS]Sheet1", "R8C1:R14C3")

(For mEE][T TR
#1 Report [record Prices)
& Output #1 Pricelst.tmp =] B3 Output Bule
apples ©.54 632
cabbage 8.23 254 = Report
corn a.17 387
grapes 1.89 128 =1 | Full_Chart Item =DDEQuery ["excel
oranges .46 223 - —
peas a.v 45 —l | LineDelimiter tem =t A
squash ©.14 430
=1 | Totals ltem =DDEQuery ['excel

TOTALS 4.13 2891

=
1] | »

| Ready

Note When you run the map, Excel and the spreadsheet file you are retrieving from must be open.

Design Guide
220

Chapter 18 — Functions that Operate on Text Data

Chapter 18 — Functions that Operate
on Text Data

This example uses the text functions FIND, LEFT, MID, and RIGHT.

What You Want to Do

You work for a health care company that has a file of employee names—doctors and nurses. You want
to retrieve only the doctors in this employee file, and generate a new file that lists the doctors and the
hospital where each works.

A doctor is indicated by the “M.D.” after the name. The hospital is indicated by the value in the last byte
of one of the fields in the employee record.

How to Do It

Define the input and output file in a type tree.

Create a map that maps the input file to the output file. To map the data, use the functions FIND, LEFT,
MID, and RIGHT.

Files used in this Example

The following table lists the files used in this example.
File Use

hospital.txt You create this input data file to use as input.

hospital.mtt You create this type tree to define the input and
output.

hospital. mms You create this map source file.

output.txt This output file is created by running the map.

Using the Type Editor

The input data looks like this:

Design Guide
221

Chapter 18 — Functions that Operate on Text Data

Samant ha Al libaster, MD. 111-24- 4291 131jj a

Kirk Benett, MD. 314-42- 9595 842keu
Val eri e Johnson, R N 423-11-9188 359iru
Lyl e Ropes, R N 239-54-5700 879nl a
Foster McMann, M D. 403-67- 3920 514i pu

Each employee record contains the employee name, social security number, and an employee code. The
last digit of the employee code indicates the hospital where the person is employed.

Implied
Define the input in a type tree.
* InputFile Data MBI E3
@ Data Component Rule
o E_mplweeﬁecﬂrd 2l |EmploveeRecard (s) Fixed, with CR/LF
= @ Field < terminator
- @ Doctar
- @ Employes
o EmployeeCods
-~ @ Hospital Component Fule _
- @ Specialy 2 [Emplayee Field — Fixed
B REtt L [SS# Field Fixed
- @ InputFile 1 |EmployeeCode Field ‘
- @ CutputFile <«——— Fixed
- @ DutputRecord

You want the output data to look like this:

Dr. Samantha Allibaster/Internist/Andrews Hospital
Dr. Kirk Benett/ Surgeon/Unitarian Hospital
Dr. Foster McMann// Unitarian Hospital

Define the output data in a type tree.

Design Guide
222

Using the Map Editor

F' Hozpital mtt MW * DutputFile Data M=l

& Data Companent Fule o _
- @ EmployeeRecord | [OutputRecord (5] 1 Dellmlted,_wnh CR/LF
= @ Field l— terminator
- @ Doctar
- @ Employes
- @ EmployeeCode
- @ Hospital # DutputRecord Data _ (O] x]
: ggimalty Component Fule
- @ InoutEil 1| Doctor Field
& Inputrile | Specialty Field [0:1]
~ @ Dutputfils \[Hospital Field

Using the Map Editor

In the executable map, the rule on OutputRecord references the functional map MAKE_RECORD. The
only employee records you want to map are the ones that have “M.D.” in the name. You can use the
FIND function.

The FIND function has at least two input arguments. It has an optional third argument. The first
argument is the text you want to find. The second argument is the text object you’re looking at. The
optional third argument specifies the position at which to begin the search. The leftmost byte has
position 1.

The FIND function returns the first position at which the given text occurs. If the text is not found, then
FIND returns 0. The meaning of the FIND function is:

FIND (Text you want to find, text item to look at, [Where to begin the search])

You want to map the employee records for which the FIND of “M.D.” does not return 0.

Design Guide
223

Using the Map Editor

The map rule for OutputRecord is:

= MAKE_RECORD (EXTRACT (Enpl oyeeRecord: I nputFile,
FIND ("M D.", Enployee Field:.:InputFile) !'=0))

The executable map looks like this:

=MAKE_RECORD[EXTRACT(EmployeeRecord:InputFile,
FIND["M.D.", Employee Field...InputFile] != 0])

To =1 =

#1 InputFile [InputFile Data) #1 Output [OutputFile Data)

=1 InputFile Output Rule
loyeeRecord (s

— Employee Field = Qutput

@ 35# Field) =1 | OutputRecord [s) =MAKE_RECORD{|
= EmployeeCode Field

=1 | Doctor Field
@
@

Specialty Field [0:1])
Hospital Field

[1 Card vl 1 Card O

| Ready

The functional map MAKE_RECORD looks like this:

Design Guide
224

Using the Map Editor

2. Mercator Map Editor - C:\AMERCATORAEXAMPLESAHOSPITAL MMS

File Map Card Bulez Edit Yiew “Window Help
Maps: [MAKE_RECORD RREEEIE] | 5=
== EE R EERE

d
>
.ISIEL

="Dr." + LEFT[Employee Field:EmployeeRecord,
FIND[".".Employee Field:EmployeeRecord) - 1)
i From M=l B3 W UG 0ol =]
#1 EmployeeRecord [Emplo #1 OutputRec [OutputRecord Data)
= EmployeeRecord Output Rule
-1 Employee Field
) S5# Field = | OutputRec
-1 EmployeeCode Field = | Doctor Field =Dr. " + LEFI'[Em|:|
-1 | Specialty Field [0:1] =IF[MID[Employee(
=1 | Hospital Field =IF[RIGHT[Employe
| 1 Card il 1 Card 1]
| Ready !

To map the Doctor field, use the LEFT, and FIND functions to retrieve everything up to the comma in
the Employee field.

The LEFT function retrieves a certain number of bytes from a text Item, beginning at the leftmost byte
of that Item. The second argument specifies how many bytes to retrieve. The meaning of the LEFT
function is:

LEFT (Text item, Number of bytes to retrieve)
The map rule for Doctor field is:
= "Dr. " + LEFT (Employee Field:EmployeeRecord,
FIND ("," , Employee Field:EmployeeRecord) - 1)

To map the Specialty field, use the MID function. The MID function retrieves a certain number of bytes
from a text Item, beginning at the position specified in argument #2. The leftmost byte has position 1.
The third argument specifies how many bytes to retrieve. The meaning of the MID function is:

MID (Text item, Starting position, Number of bytes to retrieve)

Use the MID function to look at the fourth byte of the EmployeeCode. The value in this field indicates
the specialty of the employee. If the value is “j,” the doctor is an internist. If the value is “k,” the doctor
is a surgeon. Any other value is ignored.

The map rule for Specialty field is:

Design Guide
225

Using the Map Editor

= IF (MID (EmployeeCode Field:EmployeeRecord, 4, 1) = "j", "Internist",
IF (MID (EmployeeCode Field:EmployeeRecord, 4, 1) = "k", "Surgeon”,
NONE))

To map the Hospital field, use the RIGHT function to look at the rightmost byte of the EmployeeCode.
If the value is “a”, it’s Andrews Hospital, otherwise it’s Unitarian Hospital.

The RIGHT function retrieves a certain number of bytes from a text Item, beginning at the rightmost
byte of that Item. The second argument specifies how many bytes to retrieve. The rightmost byte is
position 1. The meaning of the RIGHT function is:

RIGHT (Text item, Number of bytes to evaluate)

The map rule for Hospital field is:

= IF (RIGHT (EmployeeCode Field:EmployeeRecord, 1) =
"Andrews Hospital",
"Unitarian Hospital")

Only the doctors were mapped to the output. If the doctor has a specialty, the specialty was mapped.

i:. Mercator Map Editor - C:\MERCATORAEXAMPLES\HOSPITAL MMS

File Map Card Bules Edit Yiew “Window Help

Maps: |Executahle Jl IHIHI@I nil Ejlﬁl
== x,|n-|ﬁ@.|f@@£g

=MAKE_RECORD[EXTRACT[EmployeeRecord:InputFile,
FIND["M.D.", Employee Field:..InputFile] != 0])

B R (7 1]

‘S 11-24-4291
Kirk Benett. M.D. 314429595
:El.lalerle Juhnsun R.N. 423-11-7188

Lyle Ropes, R.M. 239-54-5700 Rule
Foster McMann. M.D. 403-67-3928 i I

& Output #1 output_txt M=l E3

Dy. Samantha Allibaster/Internist/Andreuws Hospital
Dr. HKirk Benett/SurgeonsUnitarian Hospital
Dr. Foster McMann//Unitarian Hospital

B
iu.

th

Design Guide
226

Index

Index

$, 122, 128, 163, 210
.mms file extension, 46
.mtt file extension, 16
[], 128, 163
[LAST]
in a map rule, 213
ALL function
using in a map rule, 201
Analyzing a type tree, 42, 75
errors, 43
Applications
retrieving information from, 215
Breaks in data
by change in data value, 126
by counting objects, 120
Building a map, 65

errors, 66
Card

definition of, 44

input
copying, 86
creating, 48, 76
view of, 51

name, 48, 53
definition of, 53

output

creating, 52, 77
editing, 85, 87, 92
view of, 55
type, 49, 53
definition of, 49
Card name, 48, 53
definition of, 53
Card type, 49, 53
definition of, 49
CHOOSE function
using in a map rule, 114, 155
Component
defining, 36
optional, 70, 145
range
defining, 34
rule, 122, 128
Component range
defining, 34, 73, 75
Component rule, 122, 128, 163
using to partition, 133

a card, 86, 87
a map, 92
COUNT function
using in a component rule, 122

using in a map rule, 131, 139, 141, 212

Cross-reference file
defining, 97, 104, 170
generating with a map, 106
using in a map, 98, 171
CURRENTDATE function
using in a map rule, 141
Data
breaks
by change in data value, 126
by counting objects, 120
existence
testing in a map, 100
invalid
mapping, 190
recovering from, 185
Data Descriptions, 70
Data file
generating with a map, 106
specifying for an input card, 50
specifying for an output card, 53
viewing, 67
Data objects, 12, 44
defining, 12
optional, 70
DDEQUERY function
using in a map rule, 217
Delimited format
defining, 38
Delimiter
location
defining, 42
Delimiters
defining, 70
DLL
retrieving information from, 215
Documents
Mercator Authoring System, 8
Drag and drop

a type into a component window, 33, 34, 36
an input to an output in a map, 56, 147

EITHER function
using in a map rule, 202

Concatenating text in a map rule, 58, 225 Error file
Control-break logic defining, 190
using to define data, 120 Errors
Copying build, 66
Design Guide

227

Index

data
mapping, 190
recovering from, 185
run, 67
type tree analysis, 43
Examples directory, 10
Excel spreadsheet
retrieving data from, 217
Executable map
definition, 79
Existence of data
testing in a map, 100
EXIT function
using in a map rule, 215
EXTRACT function
using in a map rule, 93, 160, 224
FIND function
using in a map rule, 223
Function
inserting into a map rule, 62, 88, 93
Functional map
creating, 125, 146, 155, 172, 224
referencing in a map rule, 107
when to use, 79, 146
Functions
ALL, 201
CHOOSE, 114, 155
COUNT, 141, 212
CURRENTDATE, 141
DDEQUERY, 217
EITHER, 202
EXIT, 215
EXTRACT, 160
FIND, 224
IF, 100, 196, 201
nested, 205
INDEX, 155, 210
LEFT, 225
LOOKUP, 106, 202
MID, 225
OR, 196
PRESENT, 61, 100
RIGHT, 175
SEARCHDOWN, 110
SEARCHUP, 112
UNIQUE, 85, 163
Grayed out rule cells, 77
Group
creating, 17
properties
defining, 37
Identifier
using, 133
IF function
nested, 205, 225
using in a map rule, 61, 100, 196, 201
Index
in a component rule, 128, 163
in a map rule, 213

INDEX function
using in a map rule, 155, 181, 209, 210
Inheritance
of type properties, 23
Initiators
defining, 179
Input card
creating, 48
view of, 51
Insert Map/Function command, 62
Introduction, 11
Invalid data
ignoring, 184
mapping, 190
recovering from, 185
Item
creating, 21
properties, 25
defining, 37
LEFT function
using in a map rule, 225
Lookup file
defining, 97, 104, 170
generating with a map, 106
using in a map, 98, 111, 171
LOOKUP function
using in a map rule, 103, 202
Map
building, 65, 82, 89, 94
errors, 66
copying, 92
creating, 44, 76
definition of, 44
functional
referencing in a map rule, 107
when to use, 146
naming, 76
new, 76
renaming, 47
rule
concatenating text in, 58
definition of, 55
entering, 55, 78, 88
formatting, 64
inserting a function into, 62, 88, 93
running, 66, 94
errors, 67
Map rule
concatenating text in, 58
definition of, 55
entering, 55, 78, 88
formatting, 64
inserting a function into, 62, 88, 93
Map source file
opening, 86
saving, 45, 84, 90, 95
Mapping invalid data
to an error file, 189
Mapping multiple files to multiple files, 168

Design Guide

228

Index

Mapping multiple files to one file, 150
Maps
list of in a source file, 47
Mercator
basic steps in using, 8
Mercator Authoring System
documents, 8
Mercator examples, 10
MID function
using in a map rule, 225
Opening
a map source file, 86
Optional data objects, 70, 143, 145
testing the existence of, 100
OR function
using in a map rule, 196
Output card
creating, 52
view of, 55
Partitioned types
defining, 133
mapping, 136
Partitioning
to make map rules simpler, 132
PRESENT function
using in a map rule, 61, 100
Properties
inheriting, 23
of a group
defining, 37, 72
of an item
defining, 25, 37
Range of a component
defining, 31, 34, 73, 75
REJECT function
using in a map rule, 189
Renaming a map, 47
Restart attribute
assigning, 185
RIGHT function
using in a map rule, 175, 226
Rule
component, 122, 128, 163
using to partition, 133
map
concatenating text in, 58
definition of, 55
entering, 55, 78, 88

formatting, 64
inserting a function into, 62, 88, 93
Rule cells
grayed out, 77
Running a map, 66
errors, 67
viewing results, 67
Saving
a type tree, 43
map source file, 45
SEARCHDOWN function
using in a map rule, 110
SEARCHUP function
using in a map rule, 112
Shorthand notation in a component rule
$, 122, 128, 163, 210
Sorting output data, 161
Spreadsheet
retrieving data from, 217
Syntax objects, 38, 40
Terminator
defining, 39
Text
concatenating in a map rule, 58, 225
entering in a map rule, 58, 172, 201
Type
creating groups, 17
creating items, 21
inheritance, 23
of a card, 49, 53
definition of, 49
partitioned
defining, 133
mapping, 136
Type tree
analyzing, 42, 75
errors, 43
creating, 14, 116
for partitioned data, 133
saving, 15, 43, 76
Types
organizing in a type tree, 22
UNIQUE function
using in a map rule, 85, 163
Using Type Editor, 71
Viewing
results of running a map, 67

229

Design Guide

	Title
	TSI Offices
	Copyright
	Trademarks

	Contents
	Using the Design Guide
	Other Mercator Documentation
	Using Mercator
	Mercator Examples
	Other Examples in This Guide

	Chapter 1 – Mercator Tutorial
	What You Want to Do
	How to Do It
	Files Used in This Chapter
	Creating a Type Tree
	Thinking about the Input
	Thinking about the Output
	Using the Type Editor
	Creating Group Types
	Creating Item Types
	Organizing Types
	Using the Type Tree Inheritance
	Create the Remaining Name Subtypes
	Create the Remaining Field Subtypes

	Defining Components
	Components of Contact
	Components of Label
	Defining the Components of Label
	Defining Item Properties
	Defining Group Properties
	Properties of Contact
	Properties of Label
	Analyze the Type Tree
	If You Have Errors

	Save the Type Tree Again
	Creating a Map
	Map Cards
	Using the Map Editor
	Save the Source File
	Rename the Map
	Create Map Cards
	Enter Map Rules
	Mapping to the Company Field
	Mapping to Street Field
	Mapping to CityStateZip Field
	Mapping to Full Name Field
	Functions Used in Map Rule

	Save the Source File
	Build the Map
	Run the Map
	View Results

	Chapter 2 – Mapping Records
	What You Want to Do
	How to Do It
	Files Used in This Chapter
	Data Descriptions
	Input Data
	Optional Data Objects
	Output Data
	Using Type Editor
	Identifying Properties of File Types
	Define Properties
	Identifying Components of File Types
	Define Components
	Using Map Editor
	Create Cards
	Enter Map Rules

	Chapter 3 - Using the UNIQUE Function
	What You Want to Do
	How to Do It
	Files Used in this Example
	Using the Map Editor

	Chapter 4 - Using the EXTRACT Function
	Case 1 – Extracting Contacts for a Specific State
	How to Do It
	Files Used in Case 1
	Using the Map Editor
	Enter the Map Rule
	Case 2 – Extracting Contacts that are Preferred
	How to Do It
	Files Used in Case 2
	Using the Type Editor
	Create the Lookup Data
	Using the Map Editor

	Chapter 5 - Testing the Existence of Data
	What You Want to Do
	How to Do It
	Files Used in this Example
	Using the Map Editor

	Chapter 6- Using Cross-Referenced Data
	When to Use LOOKUP, SEARCHDOWN, and SEARCHUP
	Case 1 - Using LOOKUP for Unordered Cross-Reference Data
	How to Do It
	Files Used in Case 1
	Using the Type Editor
	Using the LOOKUP Function
	Using the Functional Map Wizard

	Case 2 - Using the SEARCHDOWN Function
	Files Used in Case 2
	Using the Map Editor

	Case 3 - Using the SEARCHUP Function
	Files Used in Case 3
	Using the Map Editor

	Case 4 - Using the CHOOSE Function
	What You Want to Do
	How to Do It
	Files Used in Case 4

	Using the Type Editor
	Using the Map Editor
	Using the Functional Map Wizard

	Chapter 7 - Using Control-Break Logic to Define Data
	Case 1 - Breaking Data by Counting Objects
	What You Want to Do
	How to Do It
	Files Used in Case 1

	Using the Type Editor
	Using the Map Editor
	Case 2 - Breaking Data by a Change in a Data Value
	What You Want to Do
	How to Do It
	Files Used in Case 2

	Using the Type Editor
	Using the Map Editor

	Chapter 8 - Using Partitioning to Simplify Map Rules
	
	What You Want to Do
	How to Do It
	Files Used in this Example

	Using the Type Editor
	Using the Map Editor
	OrdersByDepartment
	ActivityReport

	Chapter 9 - Mapping Optional Inputs
	
	What You Want to Do
	How to Do It

	Files Used in this Example
	Using the Type Editor
	Using the Map Editor

	Chapter 10 - Mapping Multiple Files to One File
	
	What You Want to Do
	How to Do It

	Case 1 – Header and Detail Files in the Same Order
	Files Used in Case 1
	Using the Type Editor
	Using the Map Editor
	Case 2 – The Detail File is Not Sorted by PO
	Files Used in Case 2
	Using the Type Editor
	Using the Map Editor
	Case 3 – Organize the POs by Customer
	Files Used in Case 3
	Using the Type Editor
	Using the Map Editor

	Chapter 11 - Mapping Multiple Files to Multiple Files
	
	What You Want to Do
	How to Do It

	Files Used in this Example
	Using the Type Editor
	Using the Map Editor

	Chapter 12 - Arithmetic Functions and Operators
	
	What You Want to Do
	How to Do It

	Files Used in this Example
	Using the Type Editor
	Using the Map Editor

	Chapter 13 - Ignoring Invalid Data
	
	What You Want to Do
	How to Do It

	Files Used in this Example
	Using the Type Editor
	Using the Map Editor

	Chapter 14 – Mapping Invalid Data
	
	What You Want to Do—Mapping Invalid Data to a File
	How to Do It

	Files Used in this Example
	Using the Type Editor
	Using the Map Editor

	Chapter 15 – Using Logical Functions
	Case 1 – Using the OR Function
	What You Want to Do
	How to Do It
	Files Used in Case 1

	Using the Type Editor
	Using the Map Editor
	Case 2 – Using the ALL Function
	What You Want to Do
	How to Do It
	Files Used in Case 2

	Using the Type Editor
	Using the Map Editor
	Case 3 – Using the EITHER Function
	What You Want to Do
	How to Do It
	Files Used in Case 3

	Using the Type Editor
	Using the Map Editor
	Case 4 – Using Nested IF Functions
	What You Want to Do
	How to Do It
	Files Used in Case 4

	Using the Type Editor
	Using the Map Editor

	Chapter 16 – Incrementing Output Data
	
	What You Want to Do

	Case 1 – Using the INDEX Function
	How to Do It
	Files Used in Case 1

	Using the Type Editor
	Using the Map Editor
	Case 2 – Using the COUNT Function
	Files Used in Case 2
	Using the Map Editor
	Case 3 – Using the Index [LAST]
	Files Used in Case 3
	Using the Map Editor

	Chapter 17 – Retrieving Information from Other Applications
	Using the EXIT Function
	Files Used in this Example
	Understanding the Map
	Using the DDEQUERY Function
	Files Used in this Example
	Understanding the Map

	Chapter 18 – Functions that Operate on Text Data
	Index

