
TSI International Software Ltd.

MercatorMercatorMercatorMercator

Design Guide

Release 2.0

Mercator Mercator Mercator Mercator nline Librarynline Librarynline Librarynline Library

Design Guide
1

TSI Software Web Site
www.tsisoft.com

Corporate Headquarters
45 Danbury Road
Wilton, CT 06897-0840
Voice: 203.761.8600
Fax: 203.762.9677

Customer Service Centers
US/Canada 800.215.9633

847.444.0740

UK +44 (0) 171 393 8000
Australia +61 (0) 3 9820 2077
Singapore +65 225 0700
Hong Kong +852 2786 9991

Sales and Support
Bannockburn Lake Office Plaza
2345 Waukegan Road, Suite E100
Bannockburn, IL 60015
Voice: 847.317.9000
Fax: 847.317.9019

275 Madison Avenue, 24th Floor
New York, NY 10016
Voice: 212.683.0050
Fax: 212.683.0111

200 East State Street, Suite 202
Media, PA 19063
Voice: 610.892.7100
Fax: 610.892.7105

492 St Kilda Road
Melbourne, Victoria 3004
Australia
Voice: +61 (0) 3 9593 9399
Fax: +61 (0) 3 9593 9310

100 Walker Street
Level 12
North Sydney, NSW2060
Australia
Voice: +61 (0) 3 9593 9399
Fax: +61 (0) 3 9593 9310

Coveham House
Downside Bridge Road
Cobham
Surrey, England KT11 3EP
Voice: +44 (0) 193 257 6800
Fax: +44 (0) 193 257 6899

62 Queen Street
London, England EC4R 1AF
Voice: +44 (0) 171 314 9600
Fax: +44 (0) 171 314 9601

114 Rochester Row
London, England SW1P IJQ
Voice: +44 (0) 171 233 7144
Fax: +44 (0) 171 233 6931

33, rue Galilee
75116 Paris, France
Voice: +33 1 44 43 52 88
Fax: +33 1 44 43 52 99

Willy Brandt Platz 6
68161 Mannheim
Germany
Voice: +49 621 1594 164
Fax: +49 621 1594 200

Graadt van Roggenweg 328
P.O. Box 19127, 3531 AH
Utrecht, The Netherlands
Voice: +31 (0) 30 298 2269
Fax: +31 (0) 30 298 2178

12-04 Keck Seng Tower
133 Cecil Street
Singapore 06535
Voice: +65 220 1126
Fax: +65 220 6809

Research & Development
Peninsula Plaza, Suite 250
2424 North Federal Highway
Boca Raton, FL 33431
Voice: 561.394.3400
Fax: 561.394.3470

Copyright
This document is covered by the terms and conditions of the license agreement and/or the non-disclosure agreement, and may not
be reproduced according to the terms of that agreement, or without the written consent of TSI International Software Ltd.

Trademarks
Because of the nature of the material, numerous hardware and software products are mentioned by their trade names in this
publication. TSI, the TSI logo, and Mercator are registered trademarks of TSI International Software, Ltd. All other products and
company names mentioned are the property of their respective owners.

Publication Number 79507
© Jul 1999 by TSI International Software Ltd.
All rights reserved. Printed in the United States.

http:/www.tsisoft.com

Design Guide
3

Contents
Using the Design Guide .. 8
Other Mercator Documentation ... 8
Using Mercator .. 8
Mercator Examples.. 10
Other Examples in This Guide... 10

Chapter 1 – Mercator Tutorial ... 11
What You Want to Do .. 11
How to Do It ... 11
Files Used in This Chapter .. 11
Creating a Type Tree... 12
Thinking about the Input .. 12
Thinking about the Output ... 13
Using the Type Editor .. 13
Creating Group Types ... 17
Creating Item Types .. 21

Organizing Types.. 22
Using the Type Tree Inheritance .. 23
Create the Remaining Name Subtypes .. 27
Create the Remaining Field Subtypes.. 28

Defining Components .. 30
Components of Contact ... 30
Components of Label... 35
Defining the Components of Label .. 36
Defining Item Properties .. 37
Defining Group Properties ... 37
Properties of Contact ... 38
Properties of Label... 40
Analyze the Type Tree... 42

If You Have Errors .. 43
Save the Type Tree Again ... 43
Creating a Map .. 44
Map Cards ... 44
Using the Map Editor ... 45
Save the Source File ... 45
Rename the Map ... 47
Create Map Cards ... 48
Enter Map Rules .. 55
Mapping to the Company Field.. 56
Mapping to Street Field.. 57
Mapping to CityStateZip Field.. 57
Mapping to Full Name Field... 59

Functions Used in Map Rule .. 61
Save the Source File ... 65
Build the Map... 65
Run the Map .. 66
View Results .. 67

Chapter 2 – Mapping Records .. 69

Contents

Design Guide

4

What You Want to Do .. 69
How to Do It ... 69
Files Used in This Chapter .. 69
Data Descriptions .. 70
Input Data .. 70
Optional Data Objects.. 70
Output Data.. 70
Using Type Editor .. 71
Identifying Properties of File Types ... 72
Define Properties ... 72
Identifying Components of File Types ... 73
Define Components ... 73
Using Map Editor ... 76
Create Cards ... 76
Enter Map Rules .. 78

Chapter 3 - Using the UNIQUE Function.. 85
What You Want to Do .. 85
How to Do It ... 85
Files Used in this Example .. 86
Using the Map Editor ... 86

Chapter 4 - Using the EXTRACT Function... 91
Case 1 – Extracting Contacts for a Specific State... 91
How to Do It ... 91
Files Used in Case 1.. 91
Using the Map Editor ... 92
Enter the Map Rule.. 93
Case 2 – Extracting Contacts that are Preferred... 95
How to Do It ... 96
Files Used in Case 2.. 96
Using the Type Editor .. 97
Create the Lookup Data... 97
Using the Map Editor ... 98

Chapter 5 - Testing the Existence of Data ... 100
What You Want to Do .. 100
How to Do It ... 100
Files Used in this Example .. 100
Using the Map Editor ... 100

Chapter 6- Using Cross-Referenced Data.. 103
When to Use LOOKUP, SEARCHDOWN, and SEARCHUP .. 103
Case 1 - Using LOOKUP for Unordered Cross-Reference Data... 103

How to Do It .. 103
Files Used in Case 1... 104
Using the Type Editor ... 104
Using the LOOKUP Function.. 106
Using the Functional Map Wizard... 108

Case 2 - Using the SEARCHDOWN Function... 110
Files Used in Case 2... 110
Using the Map Editor .. 111

Contents

Design Guide

5

Case 3 - Using the SEARCHUP Function ... 112
Files Used in Case 3... 112
Using the Map Editor .. 113

Case 4 - Using the CHOOSE Function ... 114
What You Want to Do... 114
How to Do It .. 115
Files Used in Case 4... 115

Using the Type Editor .. 116
Using the Map Editor ... 116

Using the Functional Map Wizard... 117

Chapter 7 - Using Control-Break Logic to Define Data... 120
Case 1 - Breaking Data by Counting Objects.. 120

What You Want to Do... 120
How to Do It .. 121
Files Used in Case 1... 121

Using the Type Editor .. 121
Using the Map Editor ... 124
Case 2 - Breaking Data by a Change in a Data Value .. 126

What You Want to Do... 126
How to Do It .. 127
Files Used in Case 2... 127

Using the Type Editor .. 127
Using the Map Editor ... 131

Chapter 8 - Using Partitioning to Simplify Map Rules .. 132
What You Want to Do... 132
How to Do It .. 132
Files Used in this Example ... 132

Using the Type Editor .. 133
Using the Map Editor ... 136

OrdersByDepartment.. 136
ActivityReport.. 139

Chapter 9 - Mapping Optional Inputs ... 143
What You Want to Do... 143
How to Do It .. 144

Files Used in this Example .. 144
Using the Type Editor .. 144
Using the Map Editor ... 146

Chapter 10 - Mapping Multiple Files to One File ... 150
What You Want to Do... 150
How to Do It .. 151

Case 1 – Header and Detail Files in the Same Order ... 152
Files Used in Case 1.. 153
Using the Type Editor .. 154
Using the Map Editor ... 155
Case 2 – The Detail File is Not Sorted by PO ... 157
Files Used in Case 2.. 158
Using the Type Editor .. 159
Using the Map Editor ... 159

Contents

Design Guide

6

Case 3 – Organize the POs by Customer ... 161
Files Used in Case 3.. 162
Using the Type Editor .. 162
Using the Map Editor ... 163

Chapter 11 - Mapping Multiple Files to Multiple Files... 168
What You Want to Do... 168
How to Do It .. 168

Files Used in this Example .. 168
Using the Type Editor .. 169
Using the Map Editor ... 170

Chapter 12 - Arithmetic Functions and Operators.. 177
What You Want to Do... 177
How to Do It .. 177

Files Used in this Example .. 177
Using the Type Editor .. 178
Using the Map Editor ... 181

Chapter 13 - Ignoring Invalid Data.. 184
What You Want to Do... 184
How to Do It .. 184

Files Used in this Example .. 184
Using the Type Editor .. 184
Using the Map Editor ... 186

Chapter 14 – Mapping Invalid Data .. 189
What You Want to Do—Mapping Invalid Data to a File ... 189
How to Do It .. 189

Files Used in this Example .. 189
Using the Type Editor .. 189
Using the Map Editor ... 190

Chapter 15 – Using Logical Functions... 193
Case 1 – Using the OR Function... 193

What You Want to Do... 193
How to Do It .. 193
Files Used in Case 1... 193

Using the Type Editor .. 194
Using the Map Editor ... 196
Case 2 – Using the ALL Function.. 198

What You Want to Do... 198
How to Do It .. 199
Files Used in Case 2... 199

Using the Type Editor .. 199
Using the Map Editor ... 201
Case 3 – Using the EITHER Function ... 202

What You Want to Do... 202
How to Do It .. 202
Files Used in Case 3... 203

Using the Type Editor .. 203
Using the Map Editor ... 203

Contents

Design Guide

7

Case 4 – Using Nested IF Functions... 205
What You Want to Do... 205
How to Do It .. 205
Files Used in Case 4... 206

Using the Type Editor .. 206
Using the Map Editor ... 206

Chapter 16 – Incrementing Output Data .. 209
What You Want to Do... 209

Case 1 – Using the INDEX Function ... 209
How to Do It .. 209
Files Used in Case 1... 209

Using the Type Editor .. 210
Using the Map Editor ... 210
Case 2 – Using the COUNT Function ... 212
Files Used in Case 2.. 212
Using the Map Editor ... 212
Case 3 – Using the Index [LAST] .. 213
Files Used in Case 3.. 213
Using the Map Editor ... 213

Chapter 17 – Retrieving Information from Other Applications .. 215
Using the EXIT Function.. 215
Files Used in this Example .. 215
Understanding the Map ... 216
Using the DDEQUERY Function ... 217
Files Used in this Example .. 218
Understanding the Map ... 218

Chapter 18 – Functions that Operate on Text Data... 221
What You Want to Do... 221
How to Do It .. 221

Files used in this Example ... 221
Using the Type Editor .. 221

Using the Map Editor ... 223

Index ... 227

Using the Design Guide

Design Guide
8

Using the Design Guide
This Design Guide was created to help you learn Mercator through hands-on work. It includes a tutorial
for learning the basics, and a number of examples, which you can duplicate on your own. Use this guide
as a practical tool for learning Mercator.

Other Mercator Documentation
In addition, you should read the other Mercator Authoring System documentation, which includes the
following:

Getting Started

Type Editor Reference Guide

Map Editor Reference Guide

Functions and Expressions Reference Guide

Using a Command Execution Engine

Execution Commands Reference Guide

Building and Using an Application Adapter

Type Tree Maker Reference Guide

The Getting Started manual covers installation of the Mercator Authoring System, and introduces the
concepts of data objects and object-oriented mapping. The Type Editor Reference Guide contains
detailed information on using the Type Editor, and the Map Editor Reference Guide has similar detail
about the Map Editor. The Functions and Expressions Reference explains how expressions are
evaluated, and lists each Mercator function with its syntax and examples. Using a Command Execution
Engine discusses how to run a map on your system platform using a command Execution Engine. The
Execution Commands Reference Guide explains execution commands and their options. Building and
Using an Application Adapter explains how to build an application adapter and how to use it as a source
or destination for a map. The Type Tree Maker Reference Guide covers how to use the Type Tree Maker
to create a type tree. You may want to refer to one or more of these manuals as you work through the
Design Guide.

Using Mercator
There are three basic steps in using Mercator:

Using the Design Guide

Design Guide

9

1 The first thing you do is define your data to Mercator, in the Type Editor.

2 Next, in the Map Editor, you tell Mercator how to map your data.

3 Then, you use an Execution Engine for your system platform to actually map the data.

"Here's the
 definition of
 my data"

"Here's how to
 map my data"

"Now, map
 my data"

Using the Design Guide

Design Guide

10

Mercator Examples
Mercator comes with examples, that are installed when you run Setup. Each example includes data
file(s), type tree(s), and a map source file.

The examples are located in the “Examples” directory (folder in Windows 95), under the directory
where you installed Mercator. Within the Examples directory, is the directory “general.” Some of the
examples in the general directory are explained in this guide.

Each example is located in a directory with an appropriate name. For example, the map that uses the
EXIT function is in the Examples\general\exit directory.

Other Examples in This Guide
In addition to explaining some of the examples that come with Mercator, this guide documents other
examples. These examples show you how to use some of the Mercator functions. They also explain
common mapping methods that you may want to use.

Chapter 1 – Mercator Tutorial

Design Guide
11

Chapter 1 – Mercator Tutorial
This chapter guides you through a simple example that teaches the basics of using Mercator. Using a
data file supplied with Mercator, you follow step-by-step instructions to create your own type tree and
map. Before you begin working through this example, you should understand the basic concepts of data
objects and mapping, which are explained in the Mercator Getting Started manual.

What You Want to Do
Suppose you have a simple file of just one record. This record contains information about one of your
customers. The record includes the name of the contact person at the company, the company name, the
address, and the phone number.

Input Data:
Adams,James,P,ABC Co.,29 Frankford Rd,Bloomington,IL,60525,708,3525555

From this file, you want to generate a mailing label for that customer.

Output Data:
James P Adams
ABC Co.
29 Frankford Rd
Bloomington, IL 60525

How to Do It
First you need to define the contact data and the label data in a type tree. Next, define how you want to
transform the contact information into a label. To do this, create a map in the Map Editor. Then, build,
or compile, the map. Finally, run the map to generate the output data.

Files Used in This Chapter
The following table contains the input file and the files to create when working through the tutorial.

File Use

contact.txt Use as an input data file. It is located in your
mercator\examples directory (folder in Windows
xx).

address.mtt Create this type tree file.

Chapter 1 – Mercator Tutorial

Design Guide

12

mail.mms Create this map source file.

label.txt Running the completed map creates this output file.

Creating a Type Tree
Define the data in a type tree. Create two type trees–one for the input, and one for the output. Or, create
one type tree that defines both the input and output. It does not matter whether you create one or two
type trees. Mercator’s performance is not affected. One advantage of creating a single tree is that the
data objects that appear in both the input and the output are in one place. If you plan to create mailing
labels from a variety of different input sources, you might decide to create one tree for input, and a
separate tree for output.

Thinking about the Input
If you think about the input data, and describe it, you might say, “The file is made up of just one contact
record. The contact record is made up of certain fields.”

You need to consider which data objects will be defined as Items, and which ones will be defined as
Groups. Simple data objects will be Items. Complex data objects will be Groups.

Which objects are simple?

All of the fields are simple data objects. They do not have other data objects
inside of them. Therefore, each field will be defined as an Item.

Which objects are complex?

The contact record is complex–it is made up of fields. It is a Group. In this
case, contact records comprise the entire file.

If you look at the input data again, you see many data objects. Each field is a data object. The contact
record itself is a data object. You need to name each data object.

First Name

Middle
Name

Company Street StateCity

Zip code Phone

Area code

Contact

Adams,James,P,ABC Co.,29 Frankford Rd,Bloomington,IL,60525,708,3525555

Last Name

Chapter 1 – Mercator Tutorial

Design Guide

13

Notice that a comma is used to separate the fields, and although you cannot see it here, there is a
carriage return/linefeed (CR/LF) at the end of the record. The comma and CR/LF are syntactical objects.
They are used to separate one field from another, and tell when a record ends.

Thinking about the Output
If you think about the output data, and describe it, you might say, “The file is made up of just one
mailing label. The label is made up of four fields, each on a separate line.”

What objects are simple?

Each field in the label is considered a simple text object. Simple objects are
defined as Items.

Even the last line in the address—city, state, and zip code—is considered one
text Item.

What objects are complex?

The label is made up of multiple fields. Therefore, it is considered complex.
Complex objects are Groups. Therefore, the label is a Group.

Look at the output data, and name the data objects.

Company

Full Name

Street

CityStateZip

James P Adams
ABC Co.
29 Frankford Rd
Bloomington, IL 60525

Label

Using the Type Editor
It's time to do some hands-on work. Start the Mercator Type Editor:

Click Start, then point to Programs, point to the Mercator group, and click the Type Editor icon.

Chapter 1 – Mercator Tutorial

Design Guide

14

The first thing you need to do is to create a new type tree. The type tree’s purpose is to describe the data
to be used as input, and the data you want to create—the output. You are going to describe both the
input and output data in the same type tree.

To Create a New Type Tree

1 When you open up the Type Editor, as shown above, you will be given the option of
opening up an existing tree or creating a new one.

 The Startup dialog is displayed.

 Now, enter the name of the root type. Name the root type Data.

2 In the Root type name box, enter Data.

Click Here

Chapter 1 – Mercator Tutorial

Design Guide

15

3 Click OK.

Now, a type tree window is displayed. The root type is Data. The root type has a red icon. The red icon
means it is a Category.

The next thing you should do is save the type tree file.

To Save the Type Tree

1 From the File menu, select Save.

 Or, click the File Save tool.

 The Save As dialog is displayed.

 Save the type tree file in the Examples directory (folder in Windows 95 or 98), because this is
where the data file is located. This makes things easier later on.

2 Double-click the Examples directory.

Chapter 1 – Mercator Tutorial

Design Guide

16

 The contents of the Examples directory is displayed.

3 In the File Name field, type over TypeTree1.MMT, and enter address.

 Mercator automatically adds the extension (.mtt) to the type tree file name.

4 Click OK.

Chapter 1 – Mercator Tutorial

Design Guide

17

The name of the type tree file, address.mtt, is displayed in the title bar of the type tree.

Next, create the types.

The order in which you create types does not matter, in general. However, for this tutorial, follow along
step by step.

Creating Group Types
The Group types are Contact and Label. The Contact Group represents the input file. The Label Group
represents the output file.

So, the Group types to create are:

• Contact

• Label

To Create the Contact Type

1 From the Type menu, select Add.

 Or, click the Add Type tool.

 Or, press the INSERT key.

 The New Type is displayed in your tree. The default name is NewType1.

Chapter 1 – Mercator Tutorial

Design Guide

18

2 Type over NewType1 and enter Contact.

 Now, specify that Contact is a Group. To do that, bring up the Properties grid for this new
type. Do this with a right-mouse click on the new type and then select Properties.

 Or, click the Properties tool.

Chapter 1 – Mercator Tutorial

Design Guide

19

3 In the Class section, click on Category. From the drop-down list, select Group.

4 Click OK.

Contact should now have a green icon, indicating that it is a Group type.

Chapter 1 – Mercator Tutorial

Design Guide

20

To Create the Label Type

When you create a type, it is displayed beneath the type that is highlighted. Make sure Data is
highlighted when you create Label. This ensures that Label is placed underneath the root type, Data.

1 Select the type Data.

2 From the Type menu, select Add.

 Or, click the Add Type tool.

 Or, press the INSERT key.

 The New Type is displayed in your tree. The default name is NewType1.

3 Type over NewType1 and enter Label.

4 Bring up the properties grid and in the Class section, select Group.

5 Click OK.

The type Label, with a green icon, stems down from the root.

Now, create the Item types.

Chapter 1 – Mercator Tutorial

Design Guide

21

Creating Item Types
The Item types are all of the fields in Contact and Label. Some of the fields that appear in Contact are
also in Label. The fields in both are the Company and Street fields. Define these just once, and re-use
them.

Here is a list, in alphabetical order, of the Item types to create:

• AreaCode

• City

• CityStateZip

• Company

• First Name

• Full Name

• Last Name

• Middle Name

• Phone

• State

• Street

• ZipCode

Chapter 1 – Mercator Tutorial

Design Guide

22

Organizing Types
Sometimes, you may want to organize similar types in the same area of the type tree. Create a type and
put related types underneath it.

Create an Item named Field, and put all of the field types underneath it. In addition to organizing similar
types, another advantage of creating a Field Item is that all of the types created beneath it are
automatically created as Items. When you do this, there is no need to select Item from the Class section
when you create each field type.

To Create the Field Type

1 Select the root type, Data.

2 From the Type menu, select Add.

 Or, click the Add Type tool.

 Or, press the INSERT key.

 The New Type is displayed in your tree. The default name is NewType1.

3 Type over NewType1 and enter Field.

4 In the Class section of the Properties grid, select Item.

5 Click OK.

The Field type, with a blue icon, now stems off the root.

Note: All types are displayed in alphabetical order, from top to bottom.

Chapter 1 – Mercator Tutorial

Design Guide

23

Using the Type Tree Inheritance
When types have common properties, take advantage of the type tree’s Inheritance feature. When a type
tree is created, it inherits the properties from the type above it. If some types have common properties,
create a type and define the common properties for it. Then create all the types that have those
properties underneath it. That way, there is no need to define the same properties multiple times.

The following table contains the Items’ properties. These properties include Interpretation, Minimum
size, Maximum size, Justification, and Pad Character.

Item Interpretation Min Max Justification Pad
Character

AreaCode Text 3 3 Left <space>

City Text 2 <none> Left <space>

CityStateZip Text 10 <none> Left <space>

Company Text 3 <none> Right <space>

First Name Text 1 <none> Left <space>

Full Name Text 1 <none> Left <space>

Last Name Text 1 <none> Left <space>

Middle Name Text 1 <none> Left <space>

Phone Text 7 7 Left <space>

State Text 2 2 Left <space>

Street Text 2 <none> Left <space>

ZipCode Text 5 5 Left <space>

Notice that the name fields have the same properties. The common properties of the name fields are:

• Interpretation – text

• Minimum size – 1

• Maximum size – none

• Justification – left

• Pad Character – space

Chapter 1 – Mercator Tutorial

Design Guide

24

Create a type called Name, and assign to it the properties that all the name types have. Then, when the
name types are created, they automatically inherit these properties. There is no need to assign them for
each one.

To Create the Name Type

1 Select the Field type.

 From the Type menu, select Add.

 Or, click the Add Type tool.

 Or, press the INSERT key.

 The New Type is displayed in your tree. The default name is NewType1.

2 Type over NewType1 and enter Field.

 If you pull up the Properties grid for the Field type, you will see that Item is already chosen in
the Class section. This is because a type beneath an Item must be an Item. Mercator does not
allow you to select any other class for this type.

3 Click OK.

The Name type is displayed beneath the Field type:

Chapter 1 – Mercator Tutorial

Design Guide

25

To Define Properties of the Name Type

Now, define the properties of the Name type.

1 Select the Name type.

2 Bring up the Properties grid for the Name type.

Right-mouse click the new type and then select Properties.

 Or, click the Properties tool.

 Or, hold down the ALT key and press the ENTER key.

 The Properties grid is displayed.

 Most of the properties that were passed down from the root to Field to Name type should be
kept. You do not have to change the settings on Interpret as (text), or Pad.

 The only change to make is the Minimum size.

1 In the Size section, enter 1 in the Min box.

2 Press the ENTER key.

Chapter 1 – Mercator Tutorial

Design Guide

26

Now, each type you create under the Name type inherits the Name’s properties. There are four name
data objects—First Name, Last Name, Middle Name, and Full Name. Create four types under the Name
type, and call them First, Last, Middle, and Full. You created subtypes of Name. A subtype is a type that
stems beneath a given type.

To Create the Name Subtypes

1 Select the Name type.

 From the Type menu, select Add.

 Or, click the Add Type tool.

 Or, press the INSERT key.

 The New Type is displayed in your tree. The default name is NewType1.

2 Type over NewType1 and enter First.

Notice that Item is already selected in the Class section of the Properties grid.

The type First inherited the properties of the type Name. There is no need to define the properties for
First. It is already done! To look at the properties, select First and then bring up the Properties grid.

Chapter 1 – Mercator Tutorial

Design Guide

27

To Look at Properties of First

1 Select the First type.

2 Bring up the Properties grid for the First type.

Right-mouse click the new type and then select Properties.

 Or, click the Properties tool.

 Or, hold down the ALT key and press the ENTER key.

 The Properties grid is displayed. Note that the properties for the First type are already
defined.

Now that you have created one of the Name subtypes, define the rest.

Create the Remaining Name Subtypes
To create the rest of the Name subtypes, follow the instructions under “To Create the Name Subtypes,”.
In step 3, enter a different type name.

Chapter 1 – Mercator Tutorial

Design Guide

28

Follow the instructions three more times—once for each remaining subtype. The remaining subtypes
are:

• Last

• Middle

• Full

Now, create the remaining Items under the Field type.

Create the Remaining Field Subtypes
Create the remaining subtypes of Field:

• AreaCode

• City

• CityStateZip

• Company

• Phone

• State

• Street

• ZipCode

To Create Other Field Subtypes

Here are instructions for creating the remaining Field subtypes. In step 3, the word typename stands
for the particular name of the type, as they are listed above. For example, the first time you follow these
instructions, enter AreaCode as the typename. The next time, enter City.

1 Select the Field type.

 From the Type menu, select Add.

 Or, click the Add Type tool.

 Or, press the INSERT key.

 The New Type is displayed in your tree. The default name is NewType1.

Chapter 1 – Mercator Tutorial

Design Guide

29

2 Type over NewType1 and enter typename.

When finished creating the Field subtypes, the tree should look like this:

All Field types in the Contact and Label data are defined. The Contact and Label types are defined.
There are no other types to define.

The input and output types are now all defined in the type tree.

Chapter 1 – Mercator Tutorial

Design Guide

30

Defining Components
Now, define the components of the Group types.

A component is a data object that is part of a complex data object. For example, the data object First
Name is part of the data object Contact, so First Name is a component of Contact. The data object
CityStateZip is part of the data object Label, so CityStateZip is a component of Label.

Remember that Group types are complex—they are made up of other objects. Therefore, they have
components. In contrast, Item types are simple. They are not made up of other objects. So, Item types do
not have components.

Components of Contact
When defining components of a Group, tell Mercator what data objects make up the Group. Mercator
also needs to know the order of data objects in the data stream.

To determine the order of Contact’s components, look at the data again.

First Name

Middle
Name

Company Street StateCity

Zip code Phone

Area code

Contact

Adams,James,P, ABC Co.,29 Frankford Rd,Bloomington,IL,60525,708,3525555

Last Name

This diagram shows the components of Contact. Each field is a component of Contact. By reading the
diagram left to right, the order of the fields is clearly seen.

Now, make a list of the components of Contact, in their data stream order—their order in the data.

Components of Contact

• Last Name

• First Name

• Middle Name (0:1)

• Company

• Street

Chapter 1 – Mercator Tutorial

Design Guide

31

• City

• State

• ZipCode

• AreaCode

• Phone

The first component in the list is Last Name Field. The next component is First Name Field, and so on.

The Middle Name component has a range—(0:1). In a range, the first number in the parentheses is the
minimum number of consecutive occurrences of this component. The second number is the maximum
number of consecutive occurrences of this component. There may be between zero and one occurrence
of Middle Name in the data. Middle Name does not have to appear at all; it is optional.

To Define the Components of Contact

1 Double-click the type Contact.

 Or, select the type Contact, and press the ENTER key.

The component window of Contact is displayed. The complete name of the type is displayed in the title
bar of the component window. The complete name begins at the type and includes the names of the
types on the path up to the root type. The complete name of this type is:

 Contact Data

Note To define components, drag and drop types from the type tree into the component window. To do
this properly, make sure the two windows—the type tree window and the component window—do not
overlap.

2 Use the Tile command, in the Window menu to arrange the type tree window and the
component window so that they do not overlap.

Chapter 1 – Mercator Tutorial

Design Guide

32

 You might arrange your windows to look like this:

In the component window, there are two columns—the Component column, and the Rule column.
Move the line that separates the two columns. Right now, work with the Component column. Move
the line so that only the Component column is in sight. To do this, select it with the mouse, and drag
it over.

3 Move the column separator to the right, to increase the size of the Component column.

4 Drag and drop the type Last from the tree into the component cell.

To select the type, select any part of its name, or its icon.

Chapter 1 – Mercator Tutorial

Design Guide

33

After you drag and drop the type, you see the component name, Last Name Field, in the component cell.
This name is a relative type name. It reflects the location of the component type, with respect to the type
being defined.

Chapter 1 – Mercator Tutorial

Design Guide

34

Now, define the rest of the components by dragging and dropping the component types into the
component window.

Look at the list of Contact’s components. The component after Last Name is First Name. So, First Name
is the next component to define. Drag and drop the First item into the component cell beneath Last
Name Field. Continue to define the rest of the components this way, until all of the components of
Contact are defined.

Each time a component is added to the window, a new cell is created. The cells may scroll up, and seem
to disappear. To see these components, use the scroll bar on the right side of the component window, or
make the component window bigger.

To Add Component Range for Middle Name Field

1 Select the component Middle Name Field. Notice that the selected component appears in
the rule bar, as shown below.

 The component name is displayed in the rule bar.

2 With the mouse, click in the rule bar to the right of the component name.

3 Type a space, and then (0:1).

4 Press the ENTER key.

When the components of Contact are defined, the component window should look like this:

Chapter 1 – Mercator Tutorial

Design Guide

35

When you close the component window (by clicking on the X in the upper right corner), you will be
prompted to save the changes you have made.

Components of Label
Look at the diagram of Label.

Company

Full Name

Street

CityStateZip

James P Adams
ABC Co.
29 Frankford Rd
Bloomington,IL,60525

Label

Make a list of its components, in their order of appearance in the data:

• Full Name

• Company

Chapter 1 – Mercator Tutorial

Design Guide

36

• Street

• CityStateZip

Defining the Components of Label
1 Double-click the type Label.

 Or, select the type Label, and press the ENTER key.

 The component window of Label is displayed.

2 Arrange the type tree window and the component window so that they do not overlap.

3 Move the column separator to the right, to increase the size of the Component column.

4 Drag and drop the type Full from the tree, into the component window.

The Full Name Field, is displayed in the component window.

Define the rest of Label’s components by dragging and dropping the component types from the tree.

When finished, the component window of Label should look like this:

Chapter 1 – Mercator Tutorial

Design Guide

37

Next, define properties of the types.

Defining Item Properties
To define properties of the Items, look at the table of properties in the Using the Type Tree Inheritance
section. The table gives you the values to enter for each property. Go down the list of types and define
the properties for each one—except for the Name types, because you already defined these.

Note: If the Max size is <none>, leave the Max box blank.

The hex value 20 is a space.

Many of the properties of the Items in this data are the default properties. When the Properties dialog is
displayed, you see that these values are already specified, and you do not have to change them.

To Define Properties of Each Item

1 Select the Item whose properties you want to define.

2 Bring up the Properties grid for the Name type.

Right-mouse click the new type and then select Properties.

 Or, click the Properties tool.

 Or, hold down the ALT key and press the ENTER key.

 The Properties grid is displayed.

3 In the Interpret as list, select the Item’s interpretation.

4 In the Size section, enter the minimum size in the Min box.

5 Enter the maximum size in the Max box.

6 In the Pad section, enter the pad character in the box. If it is a non-printable character,
select Hex from the View As list, and enter the hex value in the box.

7 Save changes.

Defining Group Properties
Each Group has a certain format. Some Groups are made up of a fixed number of components, and each
component has a fixed size. These Groups have a Fixed format. Some Groups have a delimiter

Chapter 1 – Mercator Tutorial

Design Guide

38

separating the components. These Groups have a Delimited format. Finally, some Groups are neither
Fixed nor Delimited, but their components appear in a certain pattern. These Groups have an Implied
format.

Properties of Contact
Look at the diagram for Contact. The comma is used as a delimiter. So, Contact has a Delimited format.

First Name

Middle
Name

Company Street StateCity

Zip code Phone

Area code

Contact

Adams,James,P,ABC Co.,29 Frankford Rd,Bloomington,IL,60525,708,3525555

Last Name

When a Group is delimited, specify where the delimiter is displayed. Sometimes the delimiter is
displayed before each component—this is called Prefix. Sometimes the delimiter is displayed after each
component—this is called Postfix. When the delimiter is displayed between components, but not before
the first or after the last component, this is called Infix.

Because the comma is displayed between components, but not before the Last Name field, and not after
the Phone field, the location of the delimiter, in this example, is Infix.

In addition to the comma delimiter, Contact has another syntax object—the CR/LF, which is displayed
at the end of Contact. It cannot be seen because it is a combination of non-printable characters. The
CR/LF is defined as the Terminator of Contact. A Terminator is a syntax object that is displayed at the
end of a type.

To Define Properties of Contact

1 Select the type Contact.

2 Bring up the Properties grid for the Contact type.

Right-mouse click the new type and then select Properties.

 Or, click the Properties tool.

 Or, hold down the ALT key and press the ENTER key.

 The Properties grid is displayed.

3 In the Group Format section, select the value Explicit.

Chapter 1 – Mercator Tutorial

Design Guide

39

4 Click the Terminator field and select Literal from the drop-down list.

5 Click on the Value field, and you will see a Browse button. Click on this Browse button,
and the Symbols window is displayed.

6 In the Symbols window, select CR. This is the value for Carriage Return.

Chapter 1 – Mercator Tutorial

Design Guide

40

7 Click OK.

Properties of Label
Look at the diagram of Label. Each field is on a separate line. To make this happen, you define a
carriage return to appear at the end of each field. The CR is the syntax object that separates the
components of Label. Therefore, CR is defined as the delimiter of Label.

Company

Full Name

Street

CityStateZip

James P Adams
ABC Co.
29 Frankford Rd
Bloomington,IL,60525

Label

CR Delimiter
CR Delimiter

CR Delimiter
CR Delimiter

Chapter 1 – Mercator Tutorial

Design Guide

41

Because the CR delimiter is displayed after each component, the delimiter location is Postfix.

Later, you will produce a file of many labels. A blank line separates the labels. To do this you want
Mercator to put a new line at the end of each label. You will do this by inserting the NL function, for
new line.

To Define Properties of Label

1 Select the type Label.

2 Bring up the Properties grid for the Label type.

Right-mouse click on the new type and then select Properties.

 Or, click the Properties tool.

 Or, hold down the ALT key and press the ENTER key.

 The Properties grid is displayed.

3 In the Format field, select the value Explicit.

4 In the Syntax field, select the value Delimited.

Chapter 1 – Mercator Tutorial

Design Guide

42

5 In the Value field, click on the Browse button and enter <NL>. This is the value for a new
line.

6 From the Location field, select the value Postfix.

7 In the Terminator field, select the value Literal.

The type tree is now finished. You created all the types, defined components, and defined properties.
Next, double-check that you have not made any mistakes.

Analyze the Type Tree
When you finish creating a type tree and defining all the types, always analyze the type tree. The Type
Tree Analyzer reveals if you defined types inconsistently, or failed to define the aspects of the types that
allow Mercator to recognize data objects.

Now, analyze the tree.

To Analyze the Type Tree

1 From the Tree menu, select Analyze, then, select Logic and Structure.

2 Click OK.

 Mercator quickly goes through all of the analysis tasks. If your tree is error- and warning-free,
the dialog looks like this:

Chapter 1 – Mercator Tutorial

Design Guide

43

3 If your tree is error free, Click Close.

Did you get errors? You can fix them and then analyze the tree again.

If You Have Errors
If you have errors, look at the error messages and warnings from the Type Tree Analyzer.

1 In the Analyze Tree dialog, click the Results button. The Results window is displayed.

The Results window includes the analysis errors and warnings. Here is an example of an error in the
Results window:

For help in resolving errors see the topic, “Analyzer Error and Warning Messages,” in Chapter 15 – The
Type Tree Analyzer, of the Mercator Type Editor Reference Guide.

2 Fix the errors.

3 Analyze the tree again.

Save the Type Tree Again
When your type tree is error-free, save it again.

To Save the Type Tree

1 From the File menu, select Save.

Or, click the File Save tool.

Now that you have a type tree, use the Map Editor to create a map.

Chapter 1 – Mercator Tutorial

Design Guide

44

Creating a Map
Use the Map Editor to create a map. A map defines how to create a data object of a specific type. The
data object you want to create is the mailing label. The map tells Mercator to generate the label by using
certain data objects from the contact record.

Here is a diagram of how to generate the Label data object from the Contact data object:

First Name

Middle
Name

State

Zip code

Phone

Area code

Full Name

Street

Company

CityStateZip

Contact

Label

Last Name

Street

Company

City

Map Cards
In the Map Editor, you create cards to represent data objects. Each card stands for one data object that
has been defined as a particular type. Output cards represent output data objects. Input cards represent
input data objects.

You want Mercator to generate one data object of the type Label. Therefore, create an output card to
represent this data object. You want Mercator to use one data object of the type Contact, to generate the
Label. Therefore, create an input card to represent this data object.

Your map consists of these cards:

Chapter 1 – Mercator Tutorial

Design Guide

45

(Contact) (Label)

Input Output

In the output card, you enter map rules that tell Mercator how to generate the label.

Using the Map Editor
Start the Map Editor by clicking Start, and then the Map Editor icon in the Mercator Group.

Save the Source File
When you open the Map Editor, you see an empty file. This is the map source file. The name of this file
is initially untitled. You need to save this file with a new name.

1 Click on the New Map File tool.

 The Save As dialog is displayed.

Click Here

Chapter 1 – Mercator Tutorial

Design Guide

46

Save the source file in the Examples directory. This is where the data file is located. This makes
things easier later.

2 Double-click the Examples directory.

3 In the File Name box, type over the default name MapSourceFile1 and enter mail.

4 Click OK.

Mercator adds the file name extension, .mms, which stands for Mercator Map Source. Now the file
name—mail.mms—is displayed in the title bar of the Map Editor. See the example on the following
page.

Chapter 1 – Mercator Tutorial

Design Guide

47

Rename the Map
Currently, the map you are building has no name. You need to name it.

This map transforms one Contact to one Label, so name it ContactToLabel.

1 From the Map menu, select New.

 The Create New Map window is displayed.

2 In the New Map Name box, enter ContactToLabel.

3 Click OK.

Now the name of the map is displayed in the title bar, right next to the file name you created earlier.

Chapter 1 – Mercator Tutorial

Design Guide

48

Create Map Cards
Now, create the cards to represent the input and output data objects.

To Create the Input Card

1 Select the From window.

2 From the Card menu, select New.

 Or, click the Add Card tool.

 The Add Input Card dialog is displayed.

3 In the Card Name field, enter the value Contact.

The name of each card in a map must be unique. Mercator uses the card name to reference the data
object of the card.

4 In the value field for Type Tree, click the Browse button.

Chapter 1 – Mercator Tutorial

Design Guide

49

Each card represents a data object of a particular type. Select the type tree where that type has been
defined. The type of the input card is Contact. You defined this in the type tree address.mtt.

The Select Type Tree dialog is displayed.

5 Select the file address.mtt.

6 In the value field for Type Name, click the browse button to display the browse dialog.

The Browse dialog shows the type tree, as it is displayed in the Type Editor. If the entire tree is not
displayed in the window, use the scroll bar to view other parts of it.

8 Select the type Contact.

 You are pointing Mercator to the particular type that defines this input data object—Contact.

9 Click OK.

 The complete name of the type—Contact Data—is displayed in the value field for the Type
Name setting.

The Data Source is a File.

10 In the AdapterSource value field, select File, if necessary (File is the default setting).

Chapter 1 – Mercator Tutorial

Design Guide

50

You need to tell Mercator where the input data is located. The data file, contact.txt, is one Contact data
object.

11 In the FileSourcePath value field, click the Browse button.

 The Select Data File dialog is displayed:

12 Select the file contact.txt.

13 Click Select.

 When you finish defining the card, the Add Input Card dialog should look like this:

Chapter 1 – Mercator Tutorial

Design Guide

51

14 Click OK.

In the From window, the card you just created is displayed. The bottom of the window indicates that
there is 1 Card in this window.

The card number is displayed in the top left corner of the card. Input cards and output cards are
numbered consecutively.

The name of the card is displayed in two places—in the top left corner of the card, and next to the top
icon of the card.

The type of the card is displayed in the parentheses.

Click the top icon to expand. The components of Contact are displayed. When you expand a type that
has a + in a rectangular-shaped icon, you are showing the components of that type. A type with a
rectangle icon that cannot be expanded (it has a – in the icon) has no components, so it is an Item.

Chapter 1 – Mercator Tutorial

Design Guide

52

Now create the output card to represent the Label data object.

Create Output Card

1 Select the To window.

2 From the Card menu, select New.

 Or, click the Add Card tool.

 The Add Output Card dialog is displayed.

Chapter 1 – Mercator Tutorial

Design Guide

53

3 In the Card Name field, enter Label.

4 In the TypeTree section, click the browse button.

The Select Type Tree dialog is displayed.

 The type Label was defined in the type tree address.mtt.

5 Select the file, address.mtt.

6 Click OK.

7 In the TypeName field, click the browse button.

 The browse dialog is displayed, showing the type tree address.mtt.

8 Select the type Label.

 You are pointing Mercator to the particular type that defines the output data object—Label.

9 Click OK.

 The complete name of the type—Label Data—is displayed in the Name box.

10 In the File section, enter label.txt in the Name box.

 You are telling Mercator to create a data file named label.txt.

Chapter 1 – Mercator Tutorial

Design Guide

54

 When finished, the Add Output Card dialog should look like this:

11 Click OK.

The output card you created is displayed in the To window.

Chapter 1 – Mercator Tutorial

Design Guide

55

Expand the top icon of the output card to see the components of Label:

The data objects shown when the type Label is expanded are the same as the Label’s component list that
was created in the address.mtt type tree.

Notice that the output card looks similar to the input card. However, the output card has two columns—
Output and Rule.

Next, you are going to enter map rules in the cells of the Rule column.

Enter Map Rules
A map rule tells Mercator how to generate a particular data object. Each component of Label has a rule
cell. In a given component’s rule cell, you enter a map rule, telling Mercator how to generate that
component. For example, the rule you enter for the output, Full Name Field, tells Mercator how to
generate the Full Name Field data object.

You enter a map rule for each component of Label—starting with the simplest map rule, and then the
more complex ones.

Each map rule begins with an equal sign (=).

Chapter 1 – Mercator Tutorial

Design Guide

56

Mapping to the Company Field
You want the Company Field of Label to look like the Company Field of Contact. Therefore, map the
Company Field from the input into the output.

Adams,James,P,ABC Co.,29 Frankford Rd,Bloomington,IL,60525,708,3525555

James P Adams
ABC Co.
29 Frankford Rd
Bloomington, IL 60525

To Enter Map Rule for Company Field

1 Select Company Field in the input card.

2 Drag and drop Company Field on the input card, into the rule cell of Company Field on the
output card.

An equal sign is displayed in the rule bar, at the beginning. When you drag and drop an object into a
rule cell, Mercator inserts the equal sign automatically.

Chapter 1 – Mercator Tutorial

Design Guide

57

The Company Field:Contact name is displayed in the rule bar. The rule bar shows the entire contents of
the rule. In the output card—as shown in the picture of the previous Map Editor screen—the rule is only
partly visible.

The colon (:) represents a component. The name, Company Field:Contact, means “the Company Field
component of Contact.” The name represents the path of the object up the card to the top icon, or card
name.

Mapping to Street Field
You want to map the Street Field in Label from the Street Field in Contact.

Adams,James,P,ABC Co.,29 Frankford Rd,Bloomington,IL,60525,708,3525555

James P Adams
ABC Co.
29 Frankford Rd
Bloomington, IL 60525

To Enter Map Rule for Street Field

1 Select the object Street Field on the input card.

2 Drag and drop it into the rule cell for Street Field on the output card.

The object name, Street Field:Contact, is displayed in the rule bar.

Mapping to CityStateZip Field
You want the last line of the Label to include the city, state, and the zip code.
Adams,James,P,ABC Co.,29 Frankford Rd,Bloomington,IL,60525,708,3525555

James P Adams
ABC Co.
29 Frankford Rd
Bloomington, IL 60525

You want a comma and a space between the city and state, and another space between the state and zip
code.

You want the CityStateZip Field to look like this:

Chapter 1 – Mercator Tutorial

Design Guide

58

Bloomington, IL 60525

The map rule you enter is a text concatenation, including the City, State, and ZipCode fields from
Contact, spaces, and a comma. To concatenate text, use the plus sign (+). Literal text values are
enclosed in double quotes (“ ”).

To Enter a Map Rule for CityStateZip Field

1 Select City Field on the input card.

2 Drag and drop City Field into the rule cell of CityStateZip Field.

 You see =City Field:Contact in the rule bar.

3 Click in the rule bar, to the right of City Field:Contact, and type a space.

 This space is to make the rule easier to read. You can enter spaces around object names, and
operators. These spaces do not affect the evaluation of the rule.

4 Type + “, ” +

Chapter 1 – Mercator Tutorial

Design Guide

59

5 Drag and drop the State Field from the input card up into the rule bar.

6 Type + “ ” +

7 Drag and drop ZipCode Field into the rule bar.

8 Press the ENTER key.

Note: To enter the rule into the rule cell, you must press ENTER.

Your rule should now look like this:
=City Field:Contact + ", " + State Field:Contact + " " + ZipCode
Field:Contact

Mapping to Full Name Field
You want to map the First, Middle, and Last Name Fields in the Contact, to the Full Name Field in the
Label.

Chapter 1 – Mercator Tutorial

Design Guide

60

Remember that the Middle Name Field is optional—it does not have to appear in the data. Some people
do not have a middle name. If the contact person does not have a middle name, you do not want to map
the Middle Name Field.

Use a rule that checks to see if the Middle Name Field is present. If it is, you map it to the Full Name
Field. If it is not, you do not map it.

Chapter 1 – Mercator Tutorial

Design Guide

61

Functions Used in Map Rule
This rule uses two Mercator functions:

• PRESENT

• IF

The PRESENT function checks the presence of an object. If the object is present, the function returns
the boolean TRUE. If the object is not present, the function returns the boolean FALSE. The syntax of
the PRESENT function is:

PRESENT (Object to check the presence of)

The IF function has three arguments. The first argument is a condition. If it is TRUE, Mercator
performs the second argument. If it is FALSE, Mercator performs the third argument. The syntax of the
IF function is:

IF (Condition, Do this if the condition is met, Do this if the condition is not met)

A description of the map rule is: “If the Middle Name Field is present, map the First, Middle, and Last
Name Fields. If the Middle Name Field is not present, map only the First and Last Name Fields.”

The outer function in the map rule is the IF function. Its first argument is the PRESENT function. The
PRESENT function performs the test of a condition. The second argument for the IF is the text
concatenation of the first, middle and last name—what to map if the condition is true. The third
argument for the IF is a text concatenation of the first and last name—excluding the middle name—
what to map if the condition is false.

Chapter 1 – Mercator Tutorial

Design Guide

62

The rule you enter looks like this:
=IF(PRESENT(Middle Name Field:Contact),
First Name Field:Contact + " " + Middle Name Field:Contact + " " +
Last Name Field:Contact,
First Name Field:Contact + " " + Last Name Field:Contact)

To Enter a Map Rule for Full Name Field

1 Select the rule cell next to Full Name Field.

2 From the Rules menu, select Insert Function.

 The Insert Function dialog is displayed, with a list of all Mercator functions.

3 Scroll down the list of functions until you find IF, and select it.

4 Click OK.

 In the rule bar =IF() is displayed. The cursor is displayed between the parentheses, ready for
you to enter the first argument of the function.

5 To make the rule easier to read, type a few spaces.

6 Select Insert Function from the Rules menu.

7 Select the PRESENT function.

8 Click OK.

9 Type a few spaces.

10 Drag and drop Middle Name Field into the rule bar, between the parentheses of the
PRESENT function.

Chapter 1 – Mercator Tutorial

Design Guide

63

11 After the end parenthesis of the PRESENT function, type a comma, and a space.

12 Drag and drop First Name Field into the rule bar, after the space you just typed.

13 Type + “ ” +

14 Type a space.

15 Drag and drop Middle Name Field up into the rule bar.

16 Type + “ ” +

17 Type a space.

18 Drag and drop Last Name Field into the rule bar.

19 Type a comma, and a space.

20 Drag and drop First Name Field into the rule bar.

21 Type + “ ” +

22 Type a space.

23 Drag and drop Last Name Field into the rule bar.

24 Press the ENTER key.

Chapter 1 – Mercator Tutorial

Design Guide

64

When you finish, the map rule should look like this:

You can format the map rule to be more easily read.

To Format a Map Rule for Full Name Field

1 In the rule bar, click to the right of the first comma.

2 Hold down the CTRL key, and press the ENTER key.

 A new line is created in the rule bar.

3 Align the second line under the first line, by typing as many spaces as necessary. For
example, you might want the second line to begin under the “P” of the PRESENT function.

4 Click after the second comma.

5 Hold down the CTRL key, and press the ENTER key.

6 Align the third line under the second line.

7 Press the ENTER key.

Click Here

Chapter 1 – Mercator Tutorial

Design Guide

65

When you finish, your rule should look like this:

Save the Source File
Now save the map file.

1 From the File menu, select Save.

 Or, click the File Save tool.

Build the Map
After entering map rules, you build the map.

To Build the Map

1 From the Map menu, select Build.

Chapter 1 – Mercator Tutorial

Design Guide

66

 Or, click the Build tool.

 The Building Map dialog is displayed, and Mercator analyzes the map rules. If no errors occur,
Mercator compiles the map.

If You Have Errors

1 In the Building Map dialog, click the Results button.

2 Fix the errors.

3 Build the map again.

For help in resolving errors, see Chapter 11 – Building a Map, in the Map Editor Reference Guide.

Run the Map
You can run the map from the Building Map dialog.

To Run the Map

1 In the Building Map dialog, click Run.

 Or, if you do not have the Building Map dialog displayed, select Run from the Map menu.

 Or, click the Run tool.

 The Command Execution Engine window is displayed.

Chapter 1 – Mercator Tutorial

Design Guide

67

 You should see the message, Map completed successfully, in the engine window. If you do
not have this message, see Chapter 15 – Debugging a Map, in the Map Editor Reference
Guide. The time shown in the window may be different from that shown above.

2 From the File menu in the Engine window, select Exit.

View Results
Now, look at the results of your map.

To View Results

1 From the View menu, select Run Results.

Or, click the View Run Results tool.

Each data file is displayed in its own window.

Select a data file and click OK. You will then see the results.

Chapter 1 – Mercator Tutorial

Design Guide

68

CONGRATULATIONS! You have completed your first map.

Input File Output File

Chapter 2 – Mapping Records

Design Guide
69

Chapter 2 – Mapping Records
This chapter explains how to map a file of multiple records to another file of multiple records. It
discusses using a previously created executable map as a functional map. This example builds on the
work you did in Chapter 1.

What You Want to Do
You have a file that contains many contact records. You want to generate a file of many labels—one
label per contact record.

How to Do It
You already created a type tree that defines one contact record and one mailing label. You need to
define the entire file made up of many contact records and the entire file made up of many labels.

Then, in the Map Editor, you create a map that maps the contact file to the label file.

Files Used in This Chapter
The following table lists the input file to use and the files to modify and create, as you work through the
example in this chapter.

File Use

address.txt Use this data file as input. It is located in your
mercator\examples folder (directory in Windows
xx).

address.mtt Modify this type tree file that you created by
working through the tutorial in Chapter 1.

mail.mms Modify this map source file that you created by
working through the tutorial in Chapter 1.

mail.txt Running the completed map creates this output file.

Chapter 2 – Mapping Records

Design Guide

70

Data Descriptions
Following are descriptions of the input and output data for this example.

Input Data
The input data file, address.txt, is made up of an unknown number of contact records.

Here is a portion of the data:
Adams,James,P,ABC Co.,29 Frankford Rd,Bloomington,IL,60525,708,3525555
Miller,Maria,B,Conrad Corp,1234 Smith St,Buffalo Grove,CA,60089,708,3334567
Smith,Fred,A,Sand Inc.,Beach Street,Pismo Beach,FL,33321,407,8123456
Veldin,Beth,M,Any Co.,697 Berry Road,Highland Park,IL,60012,708,4445987

Each contact record matches the definition from Chapter 1.

Optional Data Objects
The Middle Name Field is optional. When it does not exist in the data, the comma delimiter still is
displayed—as a placeholder for that field.

For example, Mary Martin does not have a middle name, so there is no data for the Middle Name Field.
However, the comma is displayed, to indicate that field.

Martin,Mary,,Hooks and Hangers,123 Neverland Ave,Sky,TX,44444,302,6616000

Output Data
The output data is a file of mailing labels. You want to generate one label per contact record in the
input.

The labels should look like this:

Comma Serves as Placeholder

Chapter 2 – Mapping Records

Design Guide

71

James P Adams
ABC Co.
29 Frankford Rd
Bloomington,IL 60525

Maria B Miller
Conrad Corp
1234 Smith St
Buffalo Grove,CA 60089

Fred A Smith
Sand Inc.
Beach Street
Pismo Beach,FL 33321

Each mailing label conforms to the definition from Chapter 1.

Using Type Editor
The first thing you need to do is define the input file and the output file in the address type tree.

To Create New Types

Create a type named ContactFile to represent the input file and a type named LabelFile to represent the
output file.

1 In the Type Editor, open the address.mtt type tree.

2 Create a Group called ContactFile under the root type.

3 Create a Group called LabelFile under the root type.

When you finish, the type tree should look like this:

Chapter 2 – Mapping Records

Design Guide

72

Identifying Properties of File Types
The type ContactFile is made up of Contacts. To determine the format of ContactFile, you can ask the
following questions.

Is it fixed? No—ContactFile contains an unknown number of Contacts. It does not have a
fixed length.

Is it delimited? No—there is no delimiter between the components, Contacts, of ContactFile.
The CR/LF at the end of each Contact is already defined as the terminator of
Contact. It cannot be considered a delimiter of ContactFile.

Is it implied? Yes—if it is not fixed and it is not delimited, it is implied.

The format of LabelFile is also implied. It is made up of an unknown number of Labels.

Define Properties
You need to define the properties of ContactFile and LabelFile.

Define Properties of ContactFile

Chapter 2 – Mapping Records

Design Guide

73

Define ContactFile as having an implied format.

The default Group format is implied, because it is inherited from the root. Unless you changed it,
ContactFile should already be defined as implied.

Define Properties of LabelFile

Define LabelFile as having an implied format.

Identifying Components of File Types
The ContactFile is made up of an unknown number of Contacts. The range on the component Contact is
(s).

The LabelFile is made up of an unknown number of Labels. The range on the component Label is (s).

Define Components
Now, you need to define the components of ContactFile and LabelFile.

To Define Components of ContactFile

1 Double-click ContactFile.

2 Drag and drop Contact into the component window of ContactFile.

3 In the Set Range window, type s in the Max field.

Chapter 2 – Mapping Records

Design Guide

74

4 Click OK.

Chapter 2 – Mapping Records

Design Guide

75

5 Save ContactFile.

6 Close ContactFile.

To Define Components of LabelFile

1 Double-click LabelFile.

2 Drag and drop Label into the component window of LabelFile.

3 In the Set Range window, type s in the Max field.

4 Save LabelFile.

5 Close LabelFile.

To Analyze Type Tree

After you change a type tree, always analyze it, to make sure the changes made are consistent with the
entire definition.

1 From the Tree menu, select Analyze.

2 Click OK.

Chapter 2 – Mapping Records

Design Guide

76

If you get analysis errors, refer to the topic “Analyzer Error and Warning Messages,” in Chapter 15 –
The Type Tree Analyzer, of the Type Editor Reference Guide.

To Save Type Tree

After analyzing the tree, save it again.

1 From the File menu, select Save.

 Or, click the File Save tool.

Using Map Editor
To generate the LabelFile, create a map and store it in the source file created in Chapter 1—mail.mms.
Name the new map AddressToLabelFile.

To Create a New Map

1 In the Map Editor, open the file mail.mms. It is located in the mercator\examples folder.

2 From the Map menu, select New.

 The Create New Map dialog is displayed.

3 Enter AddressToLabelFile in the New Map Name box.

4 Click OK.

You see the new map, AddressToLabelFile.

Create Cards
In this map, the input is ContactFile and the output is LabelFile. Create an input card for ContactFile
and an output card for LabelFile.

To Create an Input Card

1 Select the From window.

2 From the Card menu, select Add Input.

3 In the Card Name box, enter ContactFile.

4 Click the Files button in the Type section.

5 Select the Mercator Type Tree address.mtt and click OK.

Chapter 2 – Mapping Records

Design Guide

77

6 Click the Browse button.

7 Select the type ContactFile and click OK.

8 In the Data section, click the Files button.

9 Select the file address.txt and click OK.

10 Click OK.

To Create an Output Card

1 Select the To window.

2 From the Card menu, select Add Output.

3 In the Card Name box, enter LabelFile.

4 In the Type section, click the Files button.

5 Select the Mercator Type Tree address.mtt and click OK.

6 Click the Browse button.

7 Select the type LabelFile and click OK.

8 In the Name box of the File section, enter mail.txt.

9 Click OK.

The expanded output card should look like this:

Chapter 2 – Mapping Records

Design Guide

78

Enter Map Rules
Expand the output so you can see all of the nested components. Notice that the only empty rule cell is
on the output Label (s). There is an unknown number of Labels. Whenever an output Group has a range
that indicates more than one occurrence, you must decide how many of that output you want to
generate.

How many Labels do you want to generate?

You want to generate one Label per Contact in the input—you want as many Labels as there are
Contacts.

Chapter 2 – Mapping Records

Design Guide

79

AddressFile MailingFile

Contact

Contact

Contact

Contact

Contact

Label

Label

Label

Label

Label

To generate one occurrence of an output Group for each occurrence of an input, use a functional map.

You need a functional map that makes one Label from one Contact. You already have a map like that!
You created it in Chapter 1—the map ContactToLabel. You used it before as an executable map—the
top level map, the one in charge of all the data. Now, use it as a functional map.

To Enter Map Rule for Output Label (s)

1 Select the rule cell for Label (s).

2 From the Rules menu, select Insert Function.

3 The Insert Map/Function dialog is displayed.

Chapter 2 – Mapping Records

Design Guide

80

4 Select the map ContactToLabel.

5 Click OK.

6 In the rule bar you see =ContactToLabel ()

Chapter 2 – Mapping Records

Design Guide

81

7 Drag and drop the input Contact up into the rule bar, between the parentheses.

8 The object name Contact:ContactFile is displayed.

9 Press the ENTER key.

The map should look like this:

Chapter 2 – Mapping Records

Design Guide

82

To Build the Map

1 From the Map menu, choose Build.

Or, select the Build tool.

If you have errors, see Chapter 11 – Building a Map, in the Map Editor Reference Guide.

To Run the Map

1 In the Build Map dialog, click the Run button.

Or, select the Run tool.

 The Execution Engine dialog is displayed. After Mercator is finished running the map, you see
the message, Map completed successfully. If you did not receive this message, see Chapter
15 – Debugging a Map, in the Map Editor Reference Guide.

Chapter 2 – Mapping Records

Design Guide

83

1 Click Cancel to exit this dialog.

Note: Your map’s execution time may be different from what is shown here. Execution times may vary
from machine to machine.

Chapter 2 – Mapping Records

Design Guide

84

To View the Results

1 From the Map menu, choose Run Results.

Or, select the View run results tool.

You should see the input file, address.txt, and the output file, mail.txt, each in a separate window.

Now, save your work.

To Save the Source File

1 From the File menu, select Save.

 Or, click the File Save tool.

Chapter 3 - Using the UNIQUE Function

Design Guide

85

Chapter 3 - Using the UNIQUE
Function

This example uses the UNIQUE function, to map data based on unique data values.

What You Want to Do
You may have noticed that some of the contact records in the address file occur multiple times. Suppose
that you do not want to create duplicate contact records. You want to generate a file containing only the
unique contact records.

How to Do It
You can modify the map you already created—AddressToLabelFile—in the source file mail.mms. To
map only the unique contacts, you use the UNIQUE function.

Chapter 3 - Using the UNIQUE Function

Design Guide

86

Files Used in this Example
This table lists the input file to use, and the files to modify and create, as you work through the example
in this chapter.

File Use

address.txt Use as an input data file. It is located in your
mercator\examples folder (directory in Windows 3.1).

address.mtt You use this type tree file that you created in Chapter 1
and modified in Chapter 2.

mail.mms You modify this map source file that you created in
Chapter 1 and modified in Chapter 2.

unique.txt This output file is created by running the completed
map.

Using the Map Editor
In the Map Editor, you copy the input card from AddressToLabelFile, to a new map. This automatically
copies the input card and generates the new map at the same time. Name the new map UniqueContacts.

To Copy the Input Card to the Input of a New Map

1 In the Map Editor, choose Open from the File menu. Open the file mail.mms. It is located
in the mercator\examples folder.

 You should see the map AddressToLabelFile. If you do not, choose it from the Map Source
Files list.

2 Select the input card.

3 From the Card menu, select Copy.

 The Copy Input Card dialog is displayed.

4 In the Map section, enter UniqueContacts.

5 Click OK.

Because the output of this map is going to also be an Address File, you can copy the same card to the
output of UniqueContacts.

To Copy the Input Card to the Output of a New Map

Chapter 3 - Using the UNIQUE Function

Design Guide

87

1 Select the input card in the map AddressToLabelFile.

2 From the Card menu, select Copy.

 The Copy Input Card dialog is displayed.

3 In the Map section enter UniqueContacts.

4 In the Card Name section, enter UniqueContactsFile

5 In the Card section, select the Copy Card As Output button.

6 Click OK.

Now, go to the map UniqueContacts, by selecting it.

The map UniqueContacts is displayed.

To Edit the Output Card

You do not want to overwrite the input data file, so you need to change the name of the output data file.

Chapter 3 - Using the UNIQUE Function

Design Guide

88

1 Select the output card.

2 From the Card menu, select Edit.

3 In the Name box of the File section, enter unique.txt.

4 Click OK.

In this map, you want to map only the unique Contacts. You use the UNIQUE function.

The UNIQUE function evaluates a series of objects, belonging to some type. It returns the unique data
objects in that series. The syntax of the UNIQUE function is:

UNIQUE (Series whose unique objects you want)

To Enter the Map Rule

1 Expand the output until you see the Contact (s).

2 Select the Rule cell for Contact(s).

3 From the Rules menu, select Insert Function.

The Insert Function dialog is displayed.

4 From the list of functions, select the UNIQUE function.

5 Click OK.

You see UNIQUE () in the map rule.

7 Drag Contact from the input into the rule bar and drop between the parentheses.

8 Press the ENTER key.

Chapter 3 - Using the UNIQUE Function

Design Guide

89

To Build the Map

2 From the Map menu, choose Build.

Or, select the Build tool.

If you have errors, see Chapter 11 – Building a Map, in the Map Editor Reference Guide.

To Run the Map

2 In the Build Map dialog, click the Run button.

Or, select the Run tool.

The Execution Engine dialog is displayed. After Mercator finishes running the map, you see the
message, Map completed successfully. If you do not get this message, see Chapter 15 – Debugging a
Map, in the Map Editor Reference Guide.

To View the Results

Chapter 3 - Using the UNIQUE Function

Design Guide

90

2 From the Map menu, choose Run Results.

Or, select the View run results tool.

The input file, address.txt, and the output file, unique.txt, are displayed—each in a separate window. In
the output, there are no duplicate contact record.

To Save the Source File

Finally, you need to save your work.

1 From the File menu, choose Save.

Or, select the Save tool.

Chapter 4 - Using the EXTRACT Function

Design Guide

91

Chapter 4 - Using the EXTRACT
Function
In this chapter, there are two examples that use the EXTRACT function to generate outputs only for
specific inputs. Beginning with Case 2, it is assumed that you are familiar with type trees and maps as
the result of working through previous chapters. Starting with Case 2 and in subsequent chapters, the
problem and solution are described, but the solution is not shown step-by-step.

Case 1 – Extracting Contacts for a Specific State
Suppose you want to create labels only for your California customers.

How to Do It
You modify the map you already created—AddressToLabelFile—in the source file mail.mms. To map
only the California contacts, use the EXTRACT function.

Files Used in Case 1
The following table lists the input file to use, and the files to modify and create, as you work through the
first example in this chapter.

File Use

address.txt Use as an input data file. It is located in your
mercator\examples folder.

address.mtt You use this type tree file, which was created in Chapter
1 and modified in Chapter 2.

mail.mms You modify this map source file, which was created in
Chapter 1 and then modified in Chapter 2. (Working
through the example in chapter 3 is not required.)

ca.txt This output file is created by running the completed map.

Chapter 4 - Using the EXTRACT Function

Design Guide

92

Using the Map Editor
You copy the map AddressToLabel File, save it under a new name and modify it. The new map is
named CaliforniaLabels.

To Copy the Map

1 In the Map Editor, open the file mail.mms. It is located in the mercator\examples folder.

 You should see the map AddressToLabelFile. If you do not, choose it from the Maps list.

2 From the Map menu, choose Copy.

 The Copy Map dialog is displayed.

3 Click the Browse button.

4 Select the file mail.mms

5 Click OK.

To Edit the Output Card

To avoid overwriting the data file you created with the AddressToLabelFile map, you change the name
of the output data file.

1 Select the output card.

2 From the Card menu, choose Edit.

3 In the File Target Path section, enter ca.txt.

4 Click OK.

Chapter 4 - Using the EXTRACT Function

Design Guide

93

Enter the Map Rule
Currently, the functional map ContactToLabel is used to map every contact to a label. In this example,
you will use the EXTRACT function so that ContactToLabel only maps contacts that have the value
“CA” in the State Field.

The EXTRACT function is used to select, from a series of objects of some type, all the ones that meet a
particular condition. It has two arguments. The first is the series you want to evaluate. The second is the
condition. EXTRACT returns the data objects of the first argument if any corresponding evaluation of
the second argument is TRUE. The syntax of the EXTRACT function is:

EXTRACT (Series whose objects you want to extract, Condition)

To Enter the Map Rule

1 Click in the rule bar.

2 From the Rules menu, select Insert Function.

 The Insert Function dialog is displayed.

3 Scroll down the list of functions, and select EXTRACT.

4 Click OK.

You now see EXTRACT () inserted into the map rule.

5 Delete the end parenthesis of the EXTRACT function.

6 Type a comma after “Contact:ContactFile.”

7 Drag and drop State Field up into the rule bar, after the comma.

8 Type = “CA”

9 Type a right parenthesis at the very end of the rule.

10 Press the ENTER key.

Chapter 4 - Using the EXTRACT Function

Design Guide

94

To Build the Map

1 From the Map menu, choose Build.

Or, click the Build Tool.

If you have errors, see Chapter 11 – Building a Map, in the Map Editor Reference Guide.

To Run the Map

1 From the Map menu, choose Run.

Or, click the Run Tool.

 The Execution Engine dialog appears. After Mercator finishes running the map, you get the
message, “Map completed successfully.” If you do not get this message, see Chapter 15 –
Debugging a Map, in the Map Editor Reference Guide.

Chapter 4 - Using the EXTRACT Function

Design Guide

95

To View the Results

1 From the Map menu, choose Run Results.

Or, select the View run results tool.

The input file, address.txt, and the output file, ca.txt, each are displayed in a separate window. Each
label that was generated has the value “CA” for the State Field.

To Save the Source File

Finally, you want to save your work.

1 From the File menu, choose Save.

Or, select the Save tool.

Case 2 – Extracting Contacts that are Preferred
Suppose you want to generate labels only for the preferred customers in the address file.

Only the
“CA”

Contacts
were

mapped

Chapter 4 - Using the EXTRACT Function

Design Guide

96

How to Do It
Generate a lookup file containing the names of preferred customers. You can use the lookup file to
determine whether a contact is a preferred customer and map only these.

Define the lookup file in a type tree.

In the Map Editor, make a copy of the AddressToLabelFile map and use the EXTRACT function in the
rule for Label.

Files Used in Case 2
The following table lists the input files you use, and the files you modify and create, as you work
through Case 2.

File Use

address.txt Use as an input data file. It is located in your
mercator\examples directory (folder in Windows 3.1).

lookup.txt You create this file to use as an input data file.

address.mtt Use this type tree that defines the address.txt input data.
It was created in Chapter 1 and modified in Chapter 2.

prefrd.mtt You create this type tree to define the lookup file.

mail.mms You modify this map source file, which was created in
Chapter 1, and then modified in Chapter 2 and in Case 1
of Chapter 4. (Working through the example in chapter 3
is not required.)

pref.txt This output file is created by running the completed map.

Chapter 4 - Using the EXTRACT Function

Design Guide

97

Using the Type Editor
You need to create the type tree for the following lookup file of preferred customers: If you want to
work through this example, you also need to create the lookup file, containing these three records:

ABC Co.,35abc,970322
Sand Inc.,529heu,970912
Andromeda Co.,577ecc,960506

Define the lookup file in a type tree:

Create the Lookup Data
Create the following lookup data in a file:

ABC Co./\35abc/\970322
Sand Inc./\529heu/\970912
Andromeda Co./\577ecc/\960506

One way to create the data is simply type it in a word processor, and save the file as text. Another way
to create the data is to create a map that has one output card—whose type is PreferredFile—and no input
cards. Index three occurrences of Customer. In each map rule for each field, hard-code the field values.
For example, the rule on the Company of the first Customer would be = “ABC Co.”. After you enter
rules for the three Customers, build and run the map to generate the lookup file. In this example, the
lookup file is called lookup.txt. For more information on using a map to generate data, see the Map
Editor Reference Guide.

Implied

Delimited with /\ and
with a CR/LF
terminator

Chapter 4 - Using the EXTRACT Function

Design Guide

98

Using the Map Editor
1 Open the file mail.mms.

2 Create a map called Preferred by copying AddressToLabelFile.

3 Edit the output card to change the file name to pref.txt.

4 Add a new input card for the lookup file.

5 Change the rule to use EXTRACT.

In the executable map named Preferred, there are two inputs—the address file and the lookup file. The
rule on the output Label calls the functional map ContactToLabel. The input argument to this map uses
the EXTRACT function to extract the Contacts, and the OR function to test if the Company Field
appears in the LookupFile.

Here is the map rule on Label:

= ContactToLabel (EXTRACT (Contact:ContactFile,
OR (Company Field:.:ContactFile = Company Field:.:LookupFile))

Here is the map:

Chapter 4 - Using the EXTRACT Function

Design Guide

99

In the output, the only labels created are those for the companies that were present in the lookup file—
ABC Co., Sand Inc., and Andromeda Co.

Chapter 5 - Testing the Existence of Data

Design Guide

100

Chapter 5 - Testing the Existence of
Data
This example uses the IF and PRESENT functions.

What You Want to Do
Generate an address file containing only those contacts with a middle name.

How to Do It
The input and output data have already been defined in Chapter 4. The definition of the input file is the
same as that for the output file.

In the map, you use the IF and PRESENT functions, to check the presence of the Middle Name Field.

Files Used in this Example
The following table lists the files used in this example.

File Use

address.txt Use this file as the input data file. It is in your
mercator\examples directory.

address.mtt This is the type tree file last used in Chapter 4,
Case 2.

mail.mms You modify this map source file, which was
last used in Chapter 4.

middle.txt This output file is created by running the map.

Using the Map Editor
You need only one map. The input is ContactFile, and the output is ContactFile.

On the output Contact(s), you use the following rule:

Chapter 5 - Testing the Existence of Data

Design Guide

101

=IF (PRESENT (Middle Name Field:.:Input), Contact:Input, NONE)

The map looks like this:

The resulting output file contains only those contacts with a middle name. For example, Mary Jones was
not mapped to the output.

Chapter 5 - Testing the Existence of Data

Design Guide

102

Chapter 6- Using Cross-Referenced Data

Design Guide

103

Chapter 6- Using Cross-Referenced
Data
To cross-reference data from a file, and incorporate it into your output, you can use one of the following
Mercator functions:

♦ LOOKUP - to get an object from a list that is not organized in any particular order

♦ SEARCHDOWN - to get an object from a list that is in descending order

♦ SEARCHUP - to get an object from a list that is in ascending order

♦ CHOOSE - to get an object at a certain position in a series

This chapter explains how to decide which function to use when you want to cross-reference data, and
how to use the function. It provides a map example using each of these functions.

The examples also illustrate using the Functional Map Wizard to create a functional map.

When to Use LOOKUP, SEARCHDOWN, and SEARCHUP
Following are three different examples, each illustrating when to use one of these functions: LOOKUP,
SEARCHDOWN, and SEARCHUP.

Case 1 - Using LOOKUP for Unordered Cross-Reference
Data

The first example uses cross-reference data that is not in any particular sequence.

You have a file of unique contacts. You want to generate a file that contains records consisting of the
name of each of your customer contacts, their company, and their geographical region.

How to Do It
The geographical region information is not in the input file, so you need another file, which contains
this information. Because you do not have this cross-reference file, you create it. You define the lookup
file and the output file in a type tree.

Then you create a map that has a single output card, and enter the data values you want. The cross-
reference file contains zip codes and their corresponding geographical region.

Chapter 6- Using Cross-Referenced Data

Design Guide

104

Next, you create a map that uses the lookup file and the address file as inputs, and generates the output
file you want.

Files Used in Case 1
The following table lists the input files to use, and the files to modify and create, in the first example in
this chapter.

File Use

unique.txt Use as an input data file. This file is created by running
the map created in Chapter 3.

region.txt This output file is created by running the first map. This
file is then used as an input data file to another map. The
lookup data, zip codes, are not in any order.

customer.mtt You create this type tree file to define the lookup file and
the output file.

customer.mms You create this map source file.

report.txt This output file is generated by running the second map
created in this example.

Using the Type Editor
Create a type tree that defines the following data. Define each record as infix delimited with two spaces:

60525 North
60089 West
33321 South
60012 North
19444 West
44444 South

Chapter 6- Using Cross-Referenced Data

Design Guide

105

Now, define the output file. The output file is made up of Sales Records. Each record contains the
contact person, the company name, and the region.

Chapter 6- Using Cross-Referenced Data

Design Guide

106

Using the LOOKUP Function
Create a map that generates the RegionFile data:

60525 North
60089 West
33321 South
60012 North
19444 West
44444 South

Do not create any input cards. Create one output card, whose type is RegionFile. Index six records.
Then, simply enter text values for the fields. For more information on indexing an output, see Chapter 5
- Formulating Map Rules in the Map Editor Reference Guide.

Chapter 6- Using Cross-Referenced Data

Design Guide

107

Now, create a map that uses the unique contact file and the region lookup file as inputs. In the map rule
for the output record, use the LOOKUP function. The LOOKUP function is the appropriate cross-
reference function to use, because the lookup file is not ordered in any specific way.

In the executable map, the rule on SalesRecord(s) references the functional map MapSalesRecord. The
two arguments are Contact, and the record whose ZipCode matches the ZipCode of the Contact. The
LOOKUP function is used.

The LOOKUP function has two arguments. The first argument is the series of objects, belonging to one
type, to be searched. The second argument is the condition you want to base the search on. LOOKUP
sequentially searches objects in the series.

It returns the first object in the series where any corresponding evaluation of the condition is TRUE. The
syntax of LOOKUP is:

LOOKUP (Series you want to lookup, Condition)

The rule on the SalesRecord output is:

=MakeSalesRecord (Contact:ContactFile,
LOOKUP (Record:RegionLookupFile,
ZipCode Field:.:RegionLookupFile = ZipCode Field:.:ContactFile))

Here is the executable map:

Chapter 6- Using Cross-Referenced Data

Design Guide

108

Using the Functional Map Wizard
Now, use the Functional Map Wizard to create the functional map MakeSalesRecord.

To use the Functional Map Wizard

1 Select the rule for which you want to generate the functional map. In this case, it is the rule
in the executable map:

=MakeSalesRecord (Contact:ContactFile,
LOOKUP (Record:RegionLookupFile,
ZipCode Field:.:RegionLookupFile = ZipCode Field:.:ContactFile))

2 From the Rules menu, choose Functional Map Wizard.

 Or click the Functional Map Wizard tool.

 The Functional Map Wizard dialog is displayed.

3 In the Functional Map Wizard dialog, name the first input card “Contact”, the second input
card “LookupRecord”, and the output card “SalesRecord”.

Chapter 6- Using Cross-Referenced Data

Design Guide

109

4 Click the Create button.

5 Click the Done button.

The Functional Map Wizard will create the functional map MakeSalesRecord.

In MakeSalesRecord, Contact field is created by concatenating the First and Last Name fields from the
input. The Company field is simply mapped from the Company field in the input. The Region from the
lookup record is mapped to the output Region.

Each record in the output file contains the Contact and the Region - information you mapped from both
the address file and the region lookup file.

Chapter 6- Using Cross-Referenced Data

Design Guide

110

Case 2 - Using the SEARCHDOWN Function
The SEARCHDOWN function is appropriate to use when the values in the cross-reference file are in
descending order. Using the SEARCHDOWN function, instead of the LOOKUP function, optimizes the
execution.

The SEARCHDOWN function searches an ordered series of objects (argument #2), using a binary
search, by comparing members of the series to another object (argument #3). The ordered series is in
descending order. The result (argument #1) is an object related to the ordered series.

The syntax of the SEARCHDOWN function is:

SEARCHDOWN (Object you want to get, Ordered series to search,
Object to compare)

Note For SEARCHDOWN to work properly, the second argument must be in descending order.

Files Used in Case 2
The following table lists the input files you use, and the files you modify and create, in the first example
in this chapter.

The
lookup

file

The
address

file

The
output

file

Chapter 6- Using Cross-Referenced Data

Design Guide

111

File Use

unique.txt Use as an input data file. This file is created by running the
map created in Chapter 3.

region3.txt Input file used for lookup. The lookup data - zip codes - are
in descending order.

customer.mtt This type tree file defines the lookup file and the output
file. It is the same type tree used in Case 1.

customer.mms This is a continuation of the map source file created in Case
1.

report.txt This output file is created by running the map.

Using the Map Editor
Suppose the Region Lookup file is ordered by the ZipCode Field. The ZipCodes are in descending
order. Create a map that generates the following data:

60525 North
60089 West
60012 North
44444 South
33321 South
19444 West

Now, the second argument to the map MakeSalesRecord is the SEARCHDOWN function:

=MakeSalesRecord (Contact:ContactFile,
SEARCHDOWN (Record:RegionLookupFile,
ZipCode Field:.:RegionLookupFile, ZipCode Field:.:ContactFile))

The results of running the map show the output with each customer Contact and Region:

Chapter 6- Using Cross-Referenced Data

Design Guide

112

Case 3 - Using the SEARCHUP Function
Use the SEARCHUP function when the cross-reference file is in ascending order.

The SEARCHUP function searches an ordered series of objects (argument #2), using a binary search, by
comparing members of the series to another object (argument #3). The ordered series is in ascending
order. The result (argument #1) is an object related to the ordered series.

The syntax of the SEARCHUP function is:

SEARCHUP (Object you want to get, Ordered series to search,
Object to compare)

Note For SEARCHUP to work properly, the second argument must be in ascending order.

Files Used in Case 3
The following table lists the input files to use, and the files to modify and create, in the first example in
this chapter.

Chapter 6- Using Cross-Referenced Data

Design Guide

113

File Use

unique.txt Use as an input data file. This file is created by running the
map created in Chapter 3.

region9.txt You create this input file. The lookup data - zip codes - are
in ascending order.

customer.mtt This type tree file defines the lookup file and the output
file. It is the same type tree used in Cases 1 and 2.

customer.mms This is a continuation of the map source file created in Case
1.

report.txt This output file is created by running the map.

Using the Map Editor
Suppose the Region Lookup file is ordered by the ZipCode Field. The ZipCodes are in ascending order.
Create a map that generates the following data:

19444 West
33321 South
44444 South
60012 North
60089 West
60525 North

The second argument to the map MakeSalesRecord is the SEARCHUP function.

=MakeSalesRecord (Contact:ContactFile,
SEARCHUP (Record:RegionLookupFile,
ZipCode Field:.:RegionLookupFile, ZipCode Field:.:ContactFile))

When you run the map and view the results, you see:

Chapter 6- Using Cross-Referenced Data

Design Guide

114

Case 4 - Using the CHOOSE Function
Use the CHOOSE function when you want to select an object at a given index in a series.

The CHOOSE function selects an object from a series. The second argument is the index of the object
chosen. The syntax for CHOOSE is:

CHOOSE (Series you want to choose from, Index of the object you
want to choose)

What You Want to Do
Suppose you conduct a raffle. You have a file listing the winners in the raffle. The first person in the file
won first place, the second person won second place, and so on.

Here is the file of winners, in order. Helen is the first prize winner, Florence is second, and so on:

Chapter 6- Using Cross-Referenced Data

Design Guide

115

Helen
Florence
Karen
Glenn
Betty
Robert
Toby

You also have a file listing the raffle prizes, and the place a winner must get, to receive the prize.

Here is the prizes file:
Hot tub, 4
Couch, 6
Stereo, 3
Dog bone, 7
House, 1
Set of luggage, 5
Car, 2

You want to generate a file that notifies each winner of their prize.

You want the output file to look like this:

Congratulations, Somebody1! You have won a PRIZE X

Congratulations, Somebody2! You have won a PRIZE Y

How to Do It
Define the three files in a type tree - the prize file, the winner file, and the output file.

Create a map that uses the prize and winner files as inputs. Use the CHOOSE function to match a prize
with the appropriate winner.

Files Used in Case 4
The following table lists the input files to use, and the files to modify and create, in this Case 4 example.

File Use

prizes.txt You create this file to use as an input data file.

winners.txt You create this file to use as an input data file.

raffle.mtt You create this type tree file, which defines the prizes file,
the winners file, and the output file.

raffle.mms You create this map source file.

output.txt This output file is created by running the map.

Chapter 6- Using Cross-Referenced Data

Design Guide

116

Using the Type Editor
The type tree looks like this:

Using the Map Editor
In the executable map, the map rule on the output CongratulationsRecord references a functional map,
Congratulate. The two inputs to this map are a prize from the prize file, and the winner whose place in
the raffle matches the place of the prize.

The map rule for CongratulationsRecord is:

= Congratulate (Prize Field:.:PrizesFile,
CHOOSE (Winner:WinnersFile, Place Field:.:PrizesFile))

The executable map is:

Chapter 6- Using Cross-Referenced Data

Design Guide

117

Now, you would create the functional map “Congratulate”. You can do it manually, or use the
Functional Map Wizard.

Using the Functional Map Wizard
1 Select the rule and choose the Functional Map Wizard tool.

2 Name the first input card “Prize”, and the second input card “Winner”.

The Functional Map Wizard creates the map Congratulate:

Chapter 6- Using Cross-Referenced Data

Design Guide

118

In the functional map Congratulate you enter the text “Congratulations, ” in the Text1 field, and “You
have won a” in the Text2 field. The name of the winner and the prize are mapped from the winner and
the prize in the input.

Chapter 6- Using Cross-Referenced Data

Design Guide

119

After entering the map rules for Congratulate, you select the executable map, build the map, and run it.
The results show that each winner was matched with an appropriate prize. Toby, the dog, won the dog
bone:

See Chapter 7 - Using the Functional Map Wizard in the Map Editor Reference Guide for information
on how the Functional Map Wizard creates the functional map.

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

120

Chapter 7 - Using Control-Break
Logic to Define Data
Sometimes you have data with physical characteristics - such as delimiters, or the length of a fixed
object - to determine where one data object ends and the next begins. If the data has delimiters or is a
fixed length, you can define these characteristics in the Mercator Type Editor.

Sometimes data is not fixed, or it may not contain delimiters. Other methods are required to define a
break in the data. This chapter contains two examples of using other methods to define a break. The first
example shows how to define a break in the data pattern when the count of a certain object reaches a
specific value. The second example shows how to define a break in the data pattern when the value of a
certain Item changes.

Case 1 - Breaking Data by Counting Objects
Sometimes, you may want to define a specific number of data objects as a single data object.

What You Want to Do
Suppose you need Mercator to recognize each set of four Contacts as a single data object, because you
want to map each set of four to a single Record in your output.

Contact

Contact

Contact

Contact

Company CompanyCompany Company

AddressFile

ContactSet

CompanyFile

Record

Company Company CompanyCompany

Contact

Contact

Contact

Contact

ContactSet

Record

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

121

Within each record, there are four Company fields. You want to map the Company field of one Contact,
to one of the Company fields in Record.

How to Do It
In the Type Editor, define the address file in terms of ContactSets, and use a component rule on the
Contact component of ContactSet. Define the company file of records.

In the Map Editor, create a map that maps the address file to the company file. Use a functional map to
map a single ContactSet to a single Record.

Files Used in Case 1
The following table lists the input files to use, and the files to modify and create, in this example.

File Use

address.txt Use as an input data file. This file is in your
mercator\examples directory (folder in Windows 95)

address2.mtt This type tree file defines the address file, the company
file, and the output file.

customer.mms This is a continuation of the map source file created in
Chapter 5.

app.txt This output file is created by running the map.

Using the Type Editor
Open the type tree address.mtt and save it as address2.mtt. Add the types CompanyFile, ContactSet, and
Record. Rename the type “ContactFile” to “NewContactFile”. Then define it with a series of
ContactSet(s) as its component.

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

122

The rule on the Contact(s) component of ContactSet ensures that a ContactSet contains up to four
Contacts.

The component rule is:

COUNT ($) <=4

Mercator recognizes each set of four Contacts as a ContactSet. If the number of Contacts in the file is
not divisible by four, the last Contacts are still considered a ContactSet, because the component rule
allows for the possibility that a set may have less than four.

This diagram illustrates how Mercator behaves as it proceeds through the data:

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

123

Is COUNT (Contact) <= 4?
5 <= 4?

Is COUNT (Contact) <= 4?
4 <= 4?

Is COUNT (Contact) <= 4?
3 <= 4?

Is COUNT (Contact) <= 4?
2 <= 4?

Is COUNT (Contact) <= 4?
1 <= 4?

Must be a new ContactSet

Yes

Yes

Yes

No

Yes

The output type CompanyFile is made up of Record(s). A Record is made up of four Company fields.

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

124

Using the Map Editor
You want to map the file of ContactSets to the company file of Records. Within each Record, there are
four Company fields. First, create the executable map CompanyMap.

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

125

A functional map, RecordMap, is used to generate one output Record per ContactSet.

In RecordMap, the Company field of each Contact is mapped to the Company field in the Record.

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

126

After you run the map, you see that each Record in the output file is made up of four Company fields
from the input.

Case 2 - Breaking Data by a Change in a Data Value
Sometimes, the thing that determines where one object ends and the next begins is a change in the value
of a certain field.

What You Want to Do
Suppose you have a file of purchase orders. Each purchase order (PO) is made up of line item records -
one record per item. The PO number appears at the beginning of each record. Therefore, the PO is a set
of consecutive line item records that have the same PO number. How would you define this kind of data
in the Type Editor?

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

127

In your data each line item record contains a PO#, Quantity, Item, and Price field. The data looks like
this:

12345 500 dress 065.99
12345 1000 pants 032.50
12345 300 suit 200.70
14478 275 pants 032.50
14478 500 suit 200.70

Suppose you want to generate a file that contains just one field - which gives the count of the POs in the
input file.

How to Do It
Define the file of purchase orders, using a component rule to distinguish one PO from the next. Define
the simple output file.

Create a map that maps the PO file to the simple count file.

Files Used in Case 2
The following table lists the input files to use, and the files to modify and create, in this example.

File Use

cntrl.txt You create this file to use as an input data file.

control.mtt You create this type tree file to define the input data and
the output data.

control.mms You create this map source file.

countpo.txt This output file is created by running the map.

Using the Type Editor
Create a type tree to look something like this:

PO #1

PO #2

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

128

Mercator must be able to recognize the PO data object. If you create this tree and analyze it, you get an
error. Mercator tells you that it cannot distinguish one PO from the next.

You can tell the difference between one PO and the next by noticing when the PO number changes. You
can use a component rule to bind together, into a single PO, all the Records that have the same value for
the PO# Field.

Suppose that Mercator is looking at a given record in the data stream. The component rule says that the
PO# of the given record is equal to the PO# in the previous record of that PO. If it is not, Mercator
knows that the given record is part of a different PO.

Use a rule on the Record(s) component of PO. Remember, whenever you see a colon (:) in a rule, that
means component. When used in a component rule, the index value [LAST] refers to the last occurrence
of Record that was found.

The component rule is:

PO# Field:Record = PO# Field:Record[LAST]

You can use $ as a shorthand notation for Record, so the component rule looks like the one below.

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

129

Using the component rule in this way defines a PO as all the consecutive Records that have a PO#
matching the PO# in the previous Record.

12345 500 dress 065.99
12345 1000 pants 032.50
12345 300 suit 200.70
14478 275 pants 032.50
14478 500 suit 200.70

How does Mercator handle the data you have? Mercator looks at the first record, and checks that the component
rule comes out to be true.

Note The index value [LAST] is interpreted as [1] when there are no previous occurrences. For
example, on the very first Record in the PO file, the component rule is interpreted as:

Is PO# Field:Record[1] = PO# Field:Record[1]?

Is PO# Field:Record[1] = PO# Field:Record[LAST]?
Is 12345 = 12345? Yes.

Next, Mercator looks at the second record.

Is PO# Field:Record[2] = PO# Field:Record[LAST]?
Is 12345 = 12345? Yes.

etc.

The diagram below shows how Mercator evaluates the component rule for the first four records in the
data. As a result, Mercator knows that the first three records make up a single PO.

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

130

Must be a different PO

Is PO# Field:Record[4] = PO# Field:Record[LAST] ?
Is 14478 = 12345?

Is PO# Field:Record[3] = PO# Field:Record[LAST] ?
Is 12345 = 12345?

Is PO# Field:Record[2] = PO# Field:Record[LAST] ?
Is 12345 = 12345?

Is PO# Field:Record[1] = PO# Field:Record[LAST] ?
Is 12345 = 12345?

Yes

Yes

Yes

No

For the output file, you define a numeric Item.

You will use the #POs Item as your output card type in the Map Editor.

#POs is defined as
a number

Chapter 7 - Using Control-Break Logic to Define Data

Design Guide

131

Using the Map Editor
In your map, you use the COUNT function to count the POs in the input file. You see that the control-
break logic allowed Mercator to recognize the correct number of POs in the file - two.

Chapter 8 - Using Partitioning to Simplify Map Rules

Design Guide

132

Chapter 8 - Using Partitioning to
Simplify Map Rules
This chapter explains how to partition types, to make your map rules simpler.

What You Want to Do
Suppose you have a file containing a collection of records, in no particular order. Each record can come
from one of three kinds of business partners - customers, suppliers, or distributors. In addition, each
record comes from one of three different applications - a forecast, purchase order, or invoice
application.

A particular field in each record tells you what business partner it came from, and another field tells you
which application it belongs to.

Suppose you want to create a file of only invoices to send to your accounting department, and a file of
only purchase orders and forecasts to send to your order entry department.

In addition, you want to send the MIS department a report on the activity of your customers, suppliers,
and distributors.

How to Do It
In the Type Editor, define the data file of records. Partition Record into the different kinds of records. In
addition, define the activity report.

In the Map Editor, create a map that has two output cards - one for the accounting department file, and
one for the order entry department file. Create another map to generate the activity report.

Files Used in this Example
For this example, use the following files, which are in your mercator\examples\general\deliver directory
(folder in Windows 95).

File Use

deliver.txt Use this file as input data.

deliver.mtt This type tree defines the data files.

deliver.mms This file contains the map explained in this

Chapter 8 - Using Partitioning to Simplify Map Rules

Design Guide

133

example.

report.txt This output file is created by running the map.

Using the Type Editor
The type tree deliver.mtt defines both the input and output data. The type Record is partitioned into
Forecast, Invoice, and PO. Then, Forecast and PO are partitioned even further. All in all, there are six
different kinds of records.

The file is made up of records in a random order. It is defined as the type Collection.

To determine whether a Record is a Forecast, Invoice, or PO record, you can look at the value of the
ApplicationID. The Identifier attribute on the component ApplicationID tells Mercator that the
components up to, and including, ApplicationID can be used to distinguish record types.

A component rule tells Mercator that the ApplicationID for Forecast is “F,” for Invoice “I,” and for PO
“P.”

Chapter 8 - Using Partitioning to Simplify Map Rules

Design Guide

134

On the next level of partitioning, the types can be distinguished by the first component. For example, the
first component of a Customer Forecast record is Customer Partner, but the first component of a
Distributor Forecast record is Distributor Partner.

Chapter 8 - Using Partitioning to Simplify Map Rules

Design Guide

135

The type Partner is the first component of each record. It is partitioned by Customer, Distributor, and
Supplier, and then by specific companies.

The component rules on each company’s partner type give the values for each field. In this way,
Mercator knows when it is looking at the ACME customer’s record, for example.

Chapter 8 - Using Partitioning to Simplify Map Rules

Design Guide

136

Using the Map Editor
There are two executable maps in this example.

OrdersByDepartment
In the executable map OrdersByDepartment, the input file is mapped to two output files. One output file
is for the Accounting department. The other output file is for the Order Entry department. Each file is
defined by the same type, Collection.

To generate the records in the Accounting output, you want to map the Invoice records from the input.
The input Record is the same as the output Record, and Record is partitioned, so you can drag and drop
Invoice record from the input to Record in the output.

Chapter 8 - Using Partitioning to Simplify Map Rules

Design Guide

137

To generate the records for the OrderEntry output, you drag and drop Forecast to Forecast, and PO to
PO. In this file, you do not want any Invoice records, so you put “=NONE” in that rule cell.

Chapter 8 - Using Partitioning to Simplify Map Rules

Design Guide

138

You can see how Mercator mapped the records to the appropriate output files.

Chapter 8 - Using Partitioning to Simplify Map Rules

Design Guide

139

ActivityReport
In the executable map ActivityReport, the COUNT function is used to generate some of the output
fields. In the last two output fields, the map rules calculate the percentages of Customer and Distributor
records in the entire input file.

The COUNT function counts the number of objects in a series. The syntax of the COUNT function is:

COUNT (Series of objects you want to count)

Chapter 8 - Using Partitioning to Simplify Map Rules

Design Guide

140

Chapter 8 - Using Partitioning to Simplify Map Rules

Design Guide

141

Here is a view of the output window maximized. You can see the different kinds of map rules used.

Chapter 8 - Using Partitioning to Simplify Map Rules

Design Guide

142

The resulting output file shows the count of each record type.

Note The value of the first field in your output may be different each time, because it is the current
date.

Chapter 9 - Mapping Optional Inputs

Design Guide

143

Chapter 9 - Mapping Optional Inputs
This example maps data that has optional data objects.

What You Want to Do
You have a data file of statistics on states in the U.S. The statistics for each state may include population
density, median household income, average summer temperature, average winter temperature, and
average yearly rainfall. Suppose you want to create a new data file that contains only the population
statistics.

Here is a portion of the input data:

Midwest:OH/257,3738/74,31,37:IL/,4285/76,26,33:IN/142,3687/75,29,39
Mountain:MT/5,3130/68,19,11:ID/8,2953/75,29,11:WY/3,3353/70,26,15
Plains:MN/48,3635/73,12,25:IA/,3549/74,20,33:MO/67,3458/78,32,35

The diagram below shows how the data objects within a Region are organized. A Region is made up of
a RegionID, and a series of States. Each State is made up of a StateID, Human, and Weather statistics.

Region

Human

Weather

State State State

RegionID StateID

Midwest:OH/257,3738/74,31,37:IL/196,4285/76,26,33:IN/142,3687/75,29,39

Within each data object, Human, are the statistics for population density and household income. Within
each data object, Weather, are the statistics for average summer temperature, average winter
temperature, and average yearly rainfall.

Chapter 9 - Mapping Optional Inputs

Design Guide

144

Human Weather

Population
Income

Summer

Winter

Rain

Midwest:OH/257,3738/74,31,37:

You want to extract each StateID and corresponding Population. The output file consists of a series
StatePops, containing a StateID and its Population.

StatePop StatePop

OH,257*IL,196*

How to Do It
Define the input and output data in a type tree.

In the Map Editor, create an executable map. To generate each StatePop in the output, use a functional
map.

Files Used in this Example
For this example, use these files, which are in your mercator\examples directory.

File Use

sts.txt Use this file as the input data file.

states.mtt This type tree defines the data files.

states.mms This map source file contains the map
explained in this example.

output.txt This output file is created by running the map.

Using the Type Editor
The input types are defined like this:

Chapter 9 - Mapping Optional Inputs

Design Guide

145

Notice that the Population Statistic is optional—it has a component range of (0:1). In the data, some
Population Statistics are missing.

Midwest:OH/257,3738/74,31,37:IL/,4285/76,26,33:IN/142,3687/75,29,39
Mountain:MT/5,3130/68,19,11:ID/8,2953/75,29,11:WY/3,3353/70,26,15
Plains:MN/48,3635/73,12,25:IA/,3549/74,20,33:MO/67,3458/78,32,35

The output types are defined like this:

Missing Population Statistic

Missing Population Statistic

Chapter 9 - Mapping Optional Inputs

Design Guide

146

Using the Map Editor
The rule on the output StatePop references a functional map, MapState.

You want to generate a StatePop only if Population exists in the input. Therefore, Population Statistic is
one of the arguments of the functional map. This ensures that if Population Statistic is missing, the
functional map is not called, and the StatePop is not created for that state.

The other argument of the functional map is StateID.

Chapter 9 - Mapping Optional Inputs

Design Guide

147

In the map MapState, the StateID and Population Statistic are simply dragged over to the outputs.

Chapter 9 - Mapping Optional Inputs

Design Guide

148

The output file shows that a StatePop was not created for the states having no Population Statistic. For
example, IL had no Population Statistic, and no IL data was created in the output.

Chapter 9 - Mapping Optional Inputs

Design Guide

149

There is no output
data for IL

Chapter 10 - Mapping Multiple Files to One File

Design Guide

150

Chapter 10 - Mapping Multiple Files
to One File
This chapter includes three examples. Each example maps two input files—one header and one detail
file—into one output file of purchase orders.

What You Want to Do
You have a header file made up of header records. Each header record includes a customer number, an
account number, a PO#, and a date. You have a detail file made up of detail records. A detail record
includes a PO#, an item ID, a quantity, and a unit price.

You want to create an output file made up of purchase orders. Each PO has a header and a set of details.

Chapter 10 - Mapping Multiple Files to One File

Design Guide

151

How to Do It
In the Type Editor, define the input header record and detail record.

Fixed data, with CR/LF
terminator

Fixed data,
with CR/LF
terminator

Chapter 10 - Mapping Multiple Files to One File

Design Guide

152

Define the output PO, Header and Detail.

Implied data, with CR/LF terminator

Fixed data,
with CR/LF
terminator

Infix delimited data, with CR/LF terminator

Next, look at how your data is organized to decide how to define the header file, detail file, and PO file,
and what map rules to use.

In each of the following examples, the files are defined differently. For each example, create an
executable map, using the header and detail files as inputs, and the PO file as the output.

Case 1 – Header and Detail Files in the Same Order
Suppose the detail file has been sorted to correspond with the data in the header file. That is, the first
header record goes with the first set of detail records, the second header record goes with the second set
of detail records, and so on.

Chapter 10 - Mapping Multiple Files to One File

Design Guide

153

The input data looks like this. The dotted lines indicate how each Header Record corresponds to a
particular set of Detail Records:

You want the output data to look like this:
4500 PO#144 Jul-26-97
aa045,10
aa097,25

7000 PO#175 Oct-04-97
aa533,100
aa022,40
aa045,15

4500 PO#100 May-14-97
aa011,10

Files Used in Case 1
The following table lists the files used in Case 1.

File Use

header.txt You create this file to use as an input data file.

detail.txt You create this file to use as an input data file.

twofiles.mtt You create this type tree to define the data files.

twofiles.mms You create this map source file.

output.txt This output file is created when you run the
map.

Chapter 10 - Mapping Multiple Files to One File

Design Guide

154

Using the Type Editor
Define the three files in a type tree. To define the detail file, define the type DetailSet, which is made up
of Record(s). Use control-break logic in a component rule to define how the sets are organized—when
the PO# changes, a new set begins.

For more information on control-break logic, see Chapter 7.

Define the type DetailSet

Use a component rule
on the component

Detail Record

Chapter 10 - Mapping Multiple Files to One File

Design Guide

155

Using the Map Editor
In the executable map, there are two inputs—the header file and the detail file. The output is the PO file.

Use a functional map to generate each PO in the output. The arguments to this map, “MakePO,” are a
Header Record, and the corresponding DetailSet. To get the corresponding DetailSet, use the CHOOSE
function. The CHOOSE function picks an object at a given index in a series. You want to pick the
DetailSet whose index matches Header Record’s index. For example, when Header Record #2 is used,
the CHOOSE function retrieves DetailSet #2 as well.

The rule on the PO output is:

=MakePO (Header Record:HeaderFile,
CHOOSE (DetailSet:DetailFile, INDEX (Header Record:HeaderFile)))

The executable map looks like this:

Chapter 10 - Mapping Multiple Files to One File

Design Guide

156

In the functional map MakePO, the Header information in the output is mapped from the Header in the
input. The Details are mapped from the Detail Records, by using another functional map—MakeDetail.

Chapter 10 - Mapping Multiple Files to One File

Design Guide

157

The final result shows that Mercator matched the header with its corresponding detail set.

Case 2 – The Detail File is Not Sorted by PO
Suppose that the detail file is not organized into sets of detail records. That is, the detail records are in a
random order. The detail records for PO# 144, for example, are scattered throughout the file.

Chapter 10 - Mapping Multiple Files to One File

Design Guide

158

Here is the new detail file:
175 aa533 100 2.35
175 aa045 15 3.70
100 aa011 10 6.90
144 aa097 25 4.32
175 aa022 40 2.25
144 aa045 10 5.60

Files Used in Case 2
The following table lists the files used in Case 2.

File Use

header.txt Use this file, which was created in Case 1, as
an input data file.

detail2.txt You create this file to use as an input data file.

newdef.mtt You create this type tree to define the data
files.

twofiles.mms This is a continuation of the map source file
you created in Case 1.

output2.txt This output file is created by running the map.

Chapter 10 - Mapping Multiple Files to One File

Design Guide

159

Using the Type Editor
Define the detail file as made up of detail records.

Using the Map Editor
Create an executable map similar to the one in Case 1. The inputs are the header file and detail file. The
output is the PO file.

In the map rule for the PO output, a functional map “MakePO2” is referenced. The two arguments to
this map are a Header Record, and the entire Detail File.

The map rule for the PO output is:

=MakePO2 (Header Record:HeaderFile, DetailFile)

Chapter 10 - Mapping Multiple Files to One File

Design Guide

160

The executable map looks like this:

In the functional map MakePO2, the rule on Detail references another functional map, MakeDetail2.
The argument to this map is the extract of the Detail Records that have the same PO# as the Header
Record.

The map rule for Detail is:

=MakeDetail2 (EXTRACT (Detail Record:Detail,
PO# Field:.:Detail = PO# Field:Header))

Chapter 10 - Mapping Multiple Files to One File

Design Guide

161

The final results show that, even though the detail records in the input file are not ordered, Mercator still
matched the header with the appropriate details.

Case 3 – Organize the POs by Customer
Suppose you want the POs in the output to be sorted by customer. The customer number is the first field
in the header of the PO. You define a POSet, made up of POs for the same customer. To generate a
POSet per customer, you use the UNIQUE function.

Chapter 10 - Mapping Multiple Files to One File

Design Guide

162

Files Used in Case 3
The following table lists the files used in Case 3.

File Use

header.txt Use this file, which was created in Case 1, as
an input data file.

detail2.txt Use this file, which was created in Case 2, as
an input data file.

newdef.mtt You modify this type tree, which was created
in Case 2.

twofiles.mms This is a continuation of the map source file
created in Case 1 and modified in Case 2.

output3.txt This output file is created by running the map.

Using the Type Editor
The definitions of the input files are the same as those in Case 2. Change the definition of the output
file. It is made up of POSets.

A POSet consists of a series of POs that have the same Customer# Field. Use control break logic in the
component rule for PO.

Chapter 10 - Mapping Multiple Files to One File

Design Guide

163

The rule for the PO component of POSet is:

Using the Map Editor
In the executable map, the rule on POSet refers to the functional map MakePOSet. The first argument is
the unique Customer# Fields. This generates one POSet per customer. The second and third arguments
are the entire header file, and the entire detail file.

The map rule for POSet is:

= MakePOSet (UNIQUE (Customer# Field:.:HeaderFile), HeaderFile,
DetailFile)

Chapter 10 - Mapping Multiple Files to One File

Design Guide

164

The executable map looks like this:

Chapter 10 - Mapping Multiple Files to One File

Design Guide

165

In the MakePOSet map, the rule on PO references another functional map, MakePO3. The first
argument of MakePO3 extracts the Header Record that has the same Customer# as the Customer# in
input card 1. The second argument is the entire Detail File.

Chapter 10 - Mapping Multiple Files to One File

Design Guide

166

In MakePO3, the rule on Detail references the map MakeDetail3. The argument to this map is the Detail
whose PO# matches that of Header Record.

Chapter 10 - Mapping Multiple Files to One File

Design Guide

167

In the resulting output file, the first POSet contains POs for customer #4500. This is followed by a
POSet for #7000.

Chapter 11 - Mapping Multiple Files to Multiple Files

Design Guide

168

Chapter 11 - Mapping Multiple Files
to Multiple Files
This chapter includes an example of mapping a file of purchase orders and a cross-reference file, to a
header file and a detail file. This map shows how you can add data to the output when it is missing from
the main input.

What You Want to Do
You have a file of purchase orders. You want to split the PO file into a Header file and a Detail file. You
also have a Cross-reference file of unit prices.

How to Do It
The Detail file has a Unit Price field, which is not in the input PO file. This Unit Price field is in a
Unit Price CrossReference file—an additional input file. Define this file in a type tree.

In the Map Editor, create a map that has the PO file and the CrossReference file as inputs, and Header
and Detail files as outputs.

Files Used in this Example
The following table lists the files used in this example.

File Use

pofile.txt Use this file as an input data file. It is a rename of the
output3.txt file created in Chapter 10, Case 3.

untprice.txt You create this file to use as the cross-reference input data.

untprice.mtt You create this type tree to define the cross-reference data.

twofiles.mtt This type tree was created in the examples of Chapter 10.

twofiles.mms This is a continuation of the map source file you created in
Chapter 10.

hdrout.txt This output file is created by running the map.

dtlout.txt This output file is created by running the map.

Chapter 11 - Mapping Multiple Files to Multiple Files

Design Guide

169

Using the Type Editor
Here is the input PO file:

4500 PO#144 Jul-26-97
aa097,25
aa045,10

7000 PO#175 Oct-04-97
aa533,100
aa045,15
aa022,40

4500 PO#100 May-14-97
aa011,10

The PO, Header, and Detail files were defined in the type tree twofiles.mtt. However, the PO file was
the output then, and the Header and Detail were the input. Open twofiles.mtt and save it as
mnytomny.mtt. Then swap the names of the Input and Output categories:

Chapter 11 - Mapping Multiple Files to Multiple Files

Design Guide

170

The data for the CrossReference file of items and unit prices looks like this:

aa045,5.60
aa097,4.32
aa533,2.35
aa022,2.25
aa045,3.70
aa011,6.90

Define the CrossReference file in a type tree:

Using the Map Editor
Create an executable map that has two inputs—the PO file, and the Unit Price file. It has two outputs—
the Header file and the Detail file.

Chapter 11 - Mapping Multiple Files to Multiple Files

Design Guide

171

The map rule on Header Record references the functional map MakeHeaderRecord. Its input is a
Header from the PO file.

The map rule on the output DetailSet references the functional map MakeDetailSet. You want to
generate a DetailSet per PO in the input. You also need the unit price information from the Unit Price
file. Therefore, there are two arguments to MakeDetailSet—a PO and the entire CrossReference file.

The map rule for DetailSet is:

= MakeDetailSet (PO:POFile, CrossReferenceFile)

Chapter 11 - Mapping Multiple Files to Multiple Files

Design Guide

172

In the functional map MakeHeaderRecord, Company is mapped to Customer# and PODate is mapped
to PODate. The Account# is the literal “klr”. The RIGHT function is used to get the right three bytes
of the input PO# and map it to the output PO#.

The RIGHT function extracts characters from a text Item, beginning at the rightmost byte of that Item.
The second argument specifies how many bytes to extract. The syntax of the RIGHT function is:

RIGHT (Text Item, Number of bytes from right)

Chapter 11 - Mapping Multiple Files to Multiple Files

Design Guide

173

Chapter 11 - Mapping Multiple Files to Multiple Files

Design Guide

174

In the functional map MakeDetailSet, the map rule on Detail Record references the map
MakeDetailRecord. Its inputs are a Detail, the PO# from the Header, and the unit price for that
particular Item.

Chapter 11 - Mapping Multiple Files to Multiple Files

Design Guide

175

In the functional map MakeDetailRecord, the RIGHT function is used to get the rightmost three bytes
of the PO#. The Description is mapped to the ItemID, the Quantity to the Qty, and the UnitPrice to
the UnitPrice.

Chapter 11 - Mapping Multiple Files to Multiple Files

Design Guide

176

The resulting output files contain all the correct information from the two input files.

Chapter 12 - Arithmetic Functions and Operators

Design Guide

177

Chapter 12 - Arithmetic Functions
and Operators
This example uses the arithmetic functions SUM, COUNT, MAX, and ROUND, and the multiplication
operator *.

What You Want to Do
Suppose that you have a Header file and a Detail file, and you want to map these files to a Purchase
Order file. In the output PO, a trailer includes summary information about the items in the PO.

How to Do It
Define the output file in a type tree.

Create a map that has the Header and Detail files as inputs, and the PO file as the output. To map the
trailer, use the arithmetic functions and operators.

Files Used in this Example
The following table lists the files used in this example.

File Use

header.txt Use this data file, which was created in Chapter 10, Case 1, as input.

detail.txt Use this data file, which was created in Chapter 10, Case 1, as input.

twofiles.mtt This tree was created in Chapter 10.

math.mtt You create this type tree to define the output file.

new_pos.mms You create this map source file.

out_po.txt This output file is created by running the map.

Chapter 12 - Arithmetic Functions and Operators

Design Guide

178

Using the Type Editor
The input files were defined in Chapter 10.

Chapter 12 - Arithmetic Functions and Operators

Design Guide

179

The output file contains POs. Each PO contains a header, a series of details, and a trailer. The output
data should look like this:

H 4500 144 Jul-26-97
D aa045,10
D aa097,25
T Total items: 2 Total cost: $164.00 Priority: High

H 7000 175 Oct-04-97
D aa533,100
D aa022,40
D aa045,15
T Total items: 3 Total cost: $384.50 Priority: Low

H 4500 100 May-14-97
D aa011,10
T Total items: 1 Total cost: $69.00 Priority: High

Define the output data in a type tree. In the PO, the header, detail and trailer begin with “H”, “D”, and
“T.” Define these as Initiators.

D initiator

H initiator

T initiator

Implied

Has a CR/LF terminator

Implied

Fixed
Infix delimited with comma
Fixed

Chapter 12 - Arithmetic Functions and Operators

Design Guide

180

The Trailer is made up the components Items, Cost, and Priority.

Fixed

Chapter 12 - Arithmetic Functions and Operators

Design Guide

181

Using the Map Editor
In the executable map, the Header and Detail files are the inputs, and the PO file is the output. The rule
on the output PO references the functional map MakePO. The arguments to MakePO are a Header
Record, and the Detail Set whose index matches the index of the Header Record.

Chapter 12 - Arithmetic Functions and Operators

Design Guide

182

In MakePO, the Header and Detail records are mapped as they are in Chapter 10.

Here are the map rules for the components of Trailer:

The #Items field is mapped using the COUNT of the Detail Records.

The TotalCost field is calculated by taking the SUM of the products of Qty*UnitPrice. Then, it is
rounded to two decimal places, with the ROUND function.

The SUM function computes the sum of a series of objects. The syntax is:

SUM (Series whose sum you want)

The ROUND function evaluates a numeric Item. It rounds the number to the number of decimal places
specified in the second argument. The syntax for ROUND is:

ROUND (Numeric Item, Number of decimal places to round to)

Chapter 12 - Arithmetic Functions and Operators

Design Guide

183

The rule on the HighPriority field uses the IF function, and the MAX function, to see if the maximum
UnitPrice in the PO is greater than 4. If it is, the value for the HighPriority field is “Yes,” otherwise, it’s
“No.”

The MAX function returns the maximum value of a series of numeric objects. Its syntax is:

MAX (Number series whose maximum value you want)

After running the map, here are the results, showing the two input files, and the new output:

Chapter 13 - Ignoring Invalid Data

Design Guide

184

Chapter 13 - Ignoring Invalid Data
This example shows how to define your data if you want Mercator to ignore invalid data.

What You Want to Do
You have a file containing your customer contacts. You want to map the customer data to a file that
gives a summary of the customer data. If Mercator finds an invalid customer record, you want Mercator
to continue mapping the data.

How to Do It
Define the input customer data in a type tree.

Define the output customer data in a type tree.

Create a map that maps the input customer data to the output customer data.

Files Used in this Example
The following table lists the files used in this example.

File Use

mycstmrs.mtt You create this type tree to define your input
customer data.

cust_out.mtt You create this type tree to define your output
customer data.

mycstmrs.mms You create this map source file to map the input
data to the output data.

names.txt Use this file as the input data file.

cust_out.txt This output file is created by running the map.

Using the Type Editor
You have an input file of customer contacts. The third customer record is invalid. The Age field is
supposed to be an integer, but it is a decimal number.

Chapter 13 - Ignoring Invalid Data

Design Guide

185

Gisela,1252 S. Broward/Ft. Lauderdale,523-2622,22
Dede,1513 Palatine Rd./Boca Raton,252-6560,86
Lewis,74099 S. 67th Ave/Ft. Lauderdale,332-8665,3.3
Eric,6933 Main St./South Miami Beach,291-7281,56

Customer has the Restart attribute

Data that is Infix delimited
with commas (,) with a
CR/LF terminator

When you want Mercator to ignore an invalid object, you assign the Restart attribute to that component.
You want Mercator to ignore any invalid Customer, so you assign the Restart to it.

To assign the Restart attribute to a given component, select the component, and then choose Restart
from the Component menu.

You want the output data to look like this:

customers in Boca: 1
customers in Ft. L: 1
customers in Miami: 1
Total # customers: 3

Define the output in a type tree:

Bad data

Chapter 13 - Ignoring Invalid Data

Design Guide

186

Fixed
Fixed

Fixed

Fixed

ImpliedThe entire output

Using the Map Editor
In the Map Editor, any component that has the Restart attribute has a red icon. There is a red icon on
Customer. The rule for calculating the number of customers in each city uses the EXTRACT and FIND
functions. For example, the rule on the output #inBoca counts the occurrences of Customers where the
text “Boca” is in the Address field:

= COUNT (EXTRACT (Customer:ContactList,
FIND ("Boca", Address:.:ContactList) !=0))

The rule on the output Total#Customers is simply the COUNT of the Customers in the input:

= COUNT (Customer:ContactList)

Chapter 13 - Ignoring Invalid Data

Design Guide

187

Because Customer has the Restart attribute, when Mercator comes across the invalid third Customer
record, Mercator will continue to validate the data.

Customer has a red icon because it has
the Restart attribute

Chapter 13 - Ignoring Invalid Data

Design Guide

188

Notice that, even though there are two customers from Ft. Lauderdale, the third Customer—from Ft.
Lauderdale—is invalid. It is not included in the calculations in the output rules. For example, the total
number of customers is 3—because there were only three valid Customer records.

Chapter 14 – Mapping Invalid Data

Design Guide

189

Chapter 14 – Mapping Invalid Data

This chapter discusses the REJECT function, and shows you how to map invalid data to an Error file.
The example is a continuation of the example in Chapter 13.

What You Want to Do—Mapping Invalid Data to a File
You want to map the invalid data in the input Customer file to an Error Eeport.

How to Do It
In the Type Editor, define the Error Eeport. In the Map Editor, create an additional output card, to map
the invalid data. Use the REJECT function.

Files Used in this Example
The following table lists the files used in this example.

File Use

mycstmrs.mtt This type tree was created in Chapter 13.

cust_out.mtt This type tree was created in Chapter 13.

errors.mtt You create this type tree to define the error file.

mycstmrs.mms This map source file was created in Chapter 13.

names.txt Use this file as input data. It was used in Chapter 13.

cust_out.txt This output file is created by running the map.

errors.txt This output file is created by running the map.

Using the Type Editor
An error file is simply an output file. To define the invalid data, create a text Item that has a minimum
size of 0, and no maximum size.

The input data was defined in Chapter 13. Here is the input data. The third Customer is invalid:

Chapter 14 – Mapping Invalid Data

Design Guide

190

Gisela,1252 S. Broward/Ft. Lauderdale,523-2622,22
Dede,1513 Palatine Rd./Boca Raton,252-6560,86
Lewis,74099 S. 67th Ave/Ft. Lauderdale,332-8665,3.3
Eric,6933 Main St./South Miami Beach,291-7281,56

Suppose you want the error file to look like this:

These are the invalid customers:

Lewis,74099 S. 67th Ave/Ft. Lauderdale,332-8665,3.3

Define the error file in a type tree. The Item “BadData” can be used to map an invalid customer. It is
defined as a text Item, with a minimum size of 0, and no maximum size. You define a series of
BadData(s) as a component of the ErrorReport—this way, each invalid customer will appear in the error
report. In this example, there is just one invalid customer.

Using the Map Editor
To map the invalid data, you can simply add another output card to the executable map from Chapter
13.

To map the invalid customers to the output BadData, use the REJECT function.

The REJECT function evaluates a series of objects, of a type that has the Restart attribute. It returns a
series of text Items—each of which is an invalid object. The syntax is:

REJECT (Series that has the Restart attribute)

Bad data

Text item,
min = 0,

no maximum,
with a CR/LF
terminator

Text item, with a
double CR/LF

terminator

Implied

Chapter 14 – Mapping Invalid Data

Design Guide

191

The resulting error file includes the invalid customer:

Use the REJECT function to map the
invalid Customers

Chapter 14 – Mapping Invalid Data

Design Guide

192

Chapter 15 – Using Logical Functions

Design Guide

193

Chapter 15 – Using Logical
Functions

There are four examples in this chapter. Each example uses a combination of the logical functions OR,
ALL, IF, and EITHER.

Case 1 – Using the OR Function
The OR function evaluates a boolean expression about a series of objects. The OR function returns the
boolean TRUE if any evaluation of the expression comes out to TRUE, or the boolean FALSE if none
of the evaluations come out to TRUE. The syntax of the OR function is:

OR (Boolean expression about a series of objects)

What You Want to Do
You have a file that lists the number of phone calls that were received at your company’s stores. You
have another file that lists the stores you are interested in collecting data for.

You want to generate a file that contains the calls for just the selected stores, and gives the total number
of calls for these stores.

How to Do It
Define the two input files and the output file in a type tree.

Create a map that has the Calls file and the Stores file as inputs, and the Summary file as the output.

Files Used in Case 1
Use these files, which you create as you work through this example:

File Use

calls.txt You create this file to use as an input data file.

stores.txt You create this file to use as an input data file.

stores.mtt You create this type tree that defines the data

Chapter 15 – Using Logical Functions

Design Guide

194

files.

stores.mms You create this map source file that contains
the map explained in this example.

summary.txt This output file is created by running the map.

Using the Type Editor
The stores data looks like this:

Store #1431
Store #1492
Store #1939
Store #1075

In the Calls data, the first field in each record is the store number, and the second field is the number of
calls. The Calls data looks like this:

Store #1208,500
Store #1939,1020
Store #1488,536
Store #1431,750

Delimited, with a
CR/LF terminator

Text item with a
CR/LF terminator

Chapter 15 – Using Logical Functions

Design Guide

195

The output data should look like this:

Calls at Selected Stores

Store #1939,1020
Store #1431,750

TOTAL NUMBER OF CALLS: 1770

Delimited with ,
and with a CR/LF

terminator

Implied

Chapter 15 – Using Logical Functions

Design Guide

196

Using the Map Editor
You do not need a functional map, because the CallRecord in the input is exactly the same type as the
CallRecord in the output. In the map rule for CallRecord, use the OR function, to map only the
CallRecords whose Store field matches the StoreName field in the stores file.

The map rule for CallRecord is:

= IF (OR (StoreName Field:Stores = Store Field:.:CallsFile),
CallRecord:CallsFile,
NONE)

Chapter 15 – Using Logical Functions

Design Guide

197

Chapter 15 – Using Logical Functions

Design Guide

198

The results include only the stores that are found in the Stores file:

Case 2 – Using the ALL Function
The ALL function evaluates a boolean expression about a series of objects. The ALL function returns
the boolean TRUE if all evaluations of the expression come out to TRUE, or the boolean FALSE if any
evaluation of the expression comes out to FALSE. The syntax of the ALL function is:

ALL (Boolean expression about a series of objects)

What You Want to Do
Suppose you have a file that rates the volume of phone calls to the different stores in your company,
over a number of different dates. The volume for each store is rated low, medium, or high.

You may need to install new phone lines in a store, if the volume of calls is consistently high. So, you
want to generate a file that lists the stores that have a rating of “high” for each date.

Chapter 15 – Using Logical Functions

Design Guide

199

How to Do It
Define the input and output file in a type tree. Create a map that maps the input file to the output file. To
map a store name to the output, use the ALL function, to determine if the store’s volume was
consistently high.

Files Used in Case 2
Continue working with the map source file created in Case 1. You need to create the input files,
containing the data described in the following topic, “Using the Type Editor.”

File Use

volume.txt You create this file to use as an input data file.

phncalls.mtt You create this type tree that defines the data files.

stores.mms You modify this map source file, which was created
in Case 1, to include the map for this example.

newlines.txt This output file is created by running the map.

Using the Type Editor
The input data looks like this:

Store #1075
09/07/97 high
09/22/97 high
09/30/97 medium
Store #1939
09/10/97 high
09/23/97 high
09/29/97 high
Store #1208
09/01/97 medium
09/12/97 low
09/26/97 medium
09/30/97 low
Store #1005
09/02/97 high
09/07/97 high

This Volume file is made up of a series of StoreInfos.

Chapter 15 – Using Logical Functions

Design Guide

200

Your output should look like this:
We need new phone lines in the following stores:
Store #1939
Store #1005

The Store Info file is made up of a Store# field and Volume records.

Postfix delimited with CR/LF

Has initiator “Store #”

Fixed

Fixed

Fixed

Postfix delimited with CR/LF

Chapter 15 – Using Logical Functions

Design Guide

201

Using the Map Editor
In the map, you want to map the Store# field if all of the Volume fields for that store contain the value
“high.” To do this, use the ALL function.

The map rule for Store# field is:

= IF (ALL (Volume Field:.:VOLUME_FILE = "high"), Store#
Field:.:VOLUME_FILE, none)

The executable map looks like this:

Chapter 15 – Using Logical Functions

Design Guide

202

The results show that Mercator mapped only the stores that had the rating “high” in every Volume field.

Case 3 – Using the EITHER Function
This example uses the EITHER function to map different data if an object evaluates to NONE.

What You Want to Do
You want to generate a file that lists all of the stores in the Calls file, and indicates whether or not the
store is listed in the Stores file.

How to Do It
Define the output data in a type tree. Create a map that maps the stores and calls data to the output file.
Use the EITHER and LOOKUP functions to determine if a given store appears in the Stores file. If the
store does not appear, put the text “Not in our stores list.”

Chapter 15 – Using Logical Functions

Design Guide

203

Files Used in Case 3
This example uses the map source file, the type tree, and the input data files created in Case 1.

File Use

stores.txt Use this file, created for Case 1, as an input
data file.

calls.txt Use this file, created for Case 1, as an input
data file.

stores.mtt Use this type tree, created in Case 1, for both
input and output types.

stores.mms You modify this map source file, which was
created in Case 1 and modified in Case 2, to
include the map for this example.

list.txt This output file is created by running the map.

Using the Type Editor
The output data should look like this:

Store #1208 Not in our stores list
Store #1939
Store #1488 Not in our stores list
Store #1431

This example shows how you can reuse types for many sources and/or destinations. The output type is
the same as the type of one of the input cards—StoreFile.

Using the Map Editor
You want to map a store name if it is present in the Stores file. If it is not present in the Stores file, you
want to map it, and add the text “Not in our stores list.” To do this, use the EITHER function.

The EITHER function has two arguments. If the first argument evaluates to a value other than NONE,
the result is the first argument. If the first argument evaluates to NONE, the result is the second
argument. The syntax of the EITHER function is:

EITHER (Expression, Expression)

The map rule for Store field is:

= EITHER (LOOKUP (StoreName Field:Stores,

Chapter 15 – Using Logical Functions

Design Guide

204

StoreName Field:Stores = Store Field:.:CallsFile),
Store Field:.:CallsFile + " Not in our stores list")

The map looks like this:

The output type is StoreFile
The input type is StoreFile

Chapter 15 – Using Logical Functions

Design Guide

205

In the output data, the stores that are not in the Stores file are indicated as such.

Case 4 – Using Nested IF Functions
In this example, you use nested IF functions to determine what data should be generated.

What You Want to Do
You want to generate a file that tells whether the number of calls at a store is low, moderate, or high.
The Calls file is the input.

How to Do It
Use the type CallsFile as the input file, and StoreFile as the output file.

Create a map that maps the Calls data to the StoreFile. To map the rating of the number of calls—not
many calls, a moderate amount, or a high number of calls—use nested IF functions.

Chapter 15 – Using Logical Functions

Design Guide

206

Files Used in Case 4
This example uses map source file, the type tree, and the input data files created in Case 1.

File Use

calls.txt Use this file, created for Case 1, as an input data file.

stores.mtt This type tree was created in Case 1.

stores.mms You modify this map source file, which was created in Case
1 and modified in Cases 2 and 3, to include the map for this
example.

ratings.txt This output file is created by running the map.

Using the Type Editor
Your output data should look like this:

Store #1208 not many calls
Store #1939 high number of calls
Store #1488 not many calls
Store #1431 moderate amount of calls

Using the Map Editor
In the map enter a rule for StoreName field. Map the Store field from the input, and then use nested IF
functions to indicate “not many calls,” “moderate amount of calls,” or “high number of calls.”

Chapter 15 – Using Logical Functions

Design Guide

207

Chapter 15 – Using Logical Functions

Design Guide

208

In the output, you can see that each store has its appropriate rating.

Chapter 16 – Incrementing Output Data

Design Guide

209

Chapter 16 – Incrementing Output
Data
This chapter shows three methods of incrementing the position of an output object. Each method uses
one of the following—the INDEX function, the COUNT function, and the index [LAST].

What You Want to Do
You have a Header file and a Detail file, which you want to map to a PO file. In the header of each PO
in the output, there is a field whose value increments by one for each PO. In the first PO, it has the value
1, in the second PO, it has the value 2, and so on.

Case 1 – Using the INDEX Function
In the first example, you use the INDEX function to index the output.

How to Do It
In the type tree, add the IndexOfPO field to the definition of the header.

In the map rule for PO, use either the INDEX function, the COUNT function, or the index [LAST] to
increment the output.

Files Used in Case 1
This example uses input data files created in Case 1 of Chapter 10. The type tree file and map source
file must be created for this example.

File Use

header.txt Use this file, created for Case 1 of Chapter 10,
as an input data file.

detail.txt Use this file, created for Case 1 of Chapter 10,
as an input data file.

incrmnt.mtt Open the type tree twofiles.mtt, created in
Chapter 10, and save it as incrmnt.mtt.

incrmnt.mms You create this map source file for use in the
examples in this chapter.

Chapter 16 – Incrementing Output Data

Design Guide

210

incrmnt.out This output file is created by running the map.

Using the Type Editor
Open the type tree twofiles.mtt, created in Chapter 10, and save it as incrmnt.mtt. Then, add a field
called IndexOfPO, and define it as an integer. Make it the last component of Header.

The field types and components in your type tree should look like the following:

Using the Map Editor
The INDEX function returns the position of an object in a series. For example, the first object has the
index of 1. The second object has the index of 2. The syntax of the INDEX function is:

INDEX (Object whose index you want)

In the map rule for the output PO, you reference the functional map MakePO. There are three arguments
to this map. The first two are the same as they are in Chapter 10. The first is the Header Record, the
second is the DetailSet that has the same index as the Header Record. The third argument is the index of
the current output, that is, the index of PO. The index of the first PO is 1, the index of the second PO is
2, and so on. To indicate the output PO, use the shorthand notation “$”.

Chapter 16 – Incrementing Output Data

Design Guide

211

In the functional map MakePO, the third input card is mapped to the IndexOfPO output.

In the output file, the IndexOfPO increments by one for each PO.

Chapter 16 – Incrementing Output Data

Design Guide

212

Case 2 – Using the COUNT Function
You can use the COUNT function instead of the INDEX function. If you count the number of POs that
have already been created in the output, you have to add 1, to include the current one. When Mercator is
creating the first PO, the count of PO is 0, so you add 1 to make it 1. When Mercator is creating the
second PO, the count of PO is 1, so you add 1 to make it 2, and so on.

Files Used in Case 2
Use the same type tree, map source file and input data files as those used in Case 1.

Using the Map Editor
The only difference between this case and the previous case is the third argument of the functional map
MakePO, which is COUNT($) + 1.

Chapter 16 – Incrementing Output Data

Design Guide

213

Case 3 – Using the Index [LAST]
Another way to increment data is to take the index of the last IndexOfPO in the output, and add 1. When
Mercator is creating the first PO, there is no IndexOfPO yet, so the index of the last one is 0. You add 1
to make it 1. When Mercator is creating the second PO, the index of the last IndexOfPO is 1. When you
add 1, it is 2.

Files Used in Case 3
The files used are the same as those used in Case 2.

Using the Map Editor
The output IndexOfPO is nested within the PO. When referring to IndexOfPO, you do not have to enter
the full object name. You can refer to the field in the entire card. The third argument of the functional
map MakePO is IndexOfPO[LAST] IN POFile+ 1.

Chapter 16 – Incrementing Output Data

Design Guide

214

Chapter 17 – Retrieving Information from Other Applications

Design Guide

215

Chapter 17 – Retrieving Information
from Other Applications

Using the EXIT Function
The EXIT function sends a text or bytestream Item to a function defined outside of Mercator, and
returns a text or bytestream Item. The EXIT function is platform-specific. For the Windows engine, the
EXIT function requires the first argument to be the name of a DLL, the second to be the name of a
function in the DLL, and the third to be the input Item. The example that follows uses AnsiUpper—a
function that receives and returns only a text Item.

It is important to remember that the EXIT function requires that the DLL function you call have only
one argument. It returns a text Item. The DLL must be written to specific requirements. For an
explanation of these requirements, see the description of the EXIT function in the Functions &
Expressions Reference Guide.

Files Used in this Example
In this example you use a DLL that comes with Windows (either user.dll or user32.dll), and a test DLL
(mydll.dll or mydll32.dll). So, if you have a 16-bit environment (Windows 3.1), you use mydll.dll and
user.dll. If you have a 32-bit environment (Windows 95 or NT), you use mydll32.dll and user32.dll.

The files for this example can be found in your mercator\examples\general\exit directory. User.dll or
user32.dll is in your system directory (or folder).

File Use

mydll.dll or
mydll32.dll

This DLL, which is the first argument of one
EXIT function, converts the text to alternating
upper and lowercase letters.

user.dll or
user32.dll

This DLL, which is the first argument of the
other EXIT function, converts text to all
uppercase characters.

exit.mtt This type tree file defines the output data of the
map.

exit.mms This map source file contains the map that uses
the EXIT function to generate data.

exittest.out This output file is generated by running the

Chapter 17 – Retrieving Information from Other Applications

Design Guide

216

map.

Understanding the Map
The map example has one output card, and no input cards. The output has two text Item components.
The meaning for the EXIT function in a Windows environment is:

EXIT(application_name, application_function_name, input_to_the_function)

Note The map to run for the 16-bit Windows environment is Exit_Example. For the 32-bit Windows
environment, the map is Exit_Example32. If you attempt to run the map for the other environment, you
get errors.

For the 32-bit environment, the map rules on the two components are:

=EXIT(“mydll32.dll”, “Alternate”, “Watch what happens to this
data.”)

=EXIT(“user32.dll”, “AnsiUpper”, “this was lower case.”)

The rule on the first component calls mydll32.dll, which converts the text to alternating upper and
lowercase letters. The rule on the second component calls user32.dll, which converts the text to
uppercase.

Chapter 17 – Retrieving Information from Other Applications

Design Guide

217

Using the DDEQUERY Function
The DDEQUERY function allows you to interface to other DDE enabled programs (Excel, Trading
Partner PC, Word for Windows, etc.). When you use DDEQUERY, you tell Mercator to ask a particular
program to provide information from a specific area of a selected file. Each program with this ability
requires that you ask for the information in a specific way.

In general, the DDEQUERY function uses these arguments:

DDEQUERY (program, topic, item)

For example, a DDEQUERY function to retrieve data from Excel may look like this:

DDEQUERY (“excel”,”[MyData.xls]Sheet1”,”R1C2:R2C5”)

A request to Trading Partner PC could look like this:

DDEQUERY (“tppc”,”PartnerX”,”BGyourEDICode”)

In both cases you supply the name of the program that you want to communicate with, a topic, and an
item. The topic, which is the second argument, is the topic of the “conversation”. In the Excel example
you see that the topic is some file, MyData.xls and, more specifically, sheet 1 of that file.

Note The executable program file must be in your DOS path. You cannot enter the full path name of
the program for the first argument of the DDEQUERY function.

The software you are retrieving information from determines the syntax of the second argument. It
should be found in the documentation for that software.

The third argument is the specific information that you want to obtain. You are asking Excel to provide
all the data in the block R1C2 to R2C5 from Sheet1 of MyData.xls. R1C2 stands for Row 1, Column 2,
and R2C5 stands for Row 2, Column5, or the block B1:E2. From Trading Partner PC (the program
tppc), you are requesting the BG EDI Code from Partner X.

DDEQUERY is a powerful function—enabling you to retrieve exactly the data you need.

Chapter 17 – Retrieving Information from Other Applications

Design Guide

218

Note The application you interact with must be running while your map is running. In addition, if you
use a DDEQUERY to a particular file in that application, that file must be open. If a DDEQUERY
function is encountered when running a map, and these conditions are not met, then another instance of
that program may be started.

For example, if you have Excel open, but with a worksheet other than MyData.xls, the DDEQUERY
may start Excel again, resulting in two Excel sessions going at the same time. You could quickly run out
of memory if you continually attempt to run the map.

Files Used in this Example
The files for this example include the Excel spreadsheet mktprice.xls. These files are in your
mercator\examples\general\ddequery directory (folder in Windows 95).

File Use

mktprice.xls Open this spreadsheet in Excel when you run
the map. This spreadsheet file contains data
that the DDEQUERY function requests.

invtory.mtt This type tree file defines the output data of
the map.

inv2txt.mms This map source file contains a map that uses
DDEQUERY in a map rule. When the map is
run, it uses input retrieved from the Excel
spreadsheet to generate output.

pricelst.tmp This output file is created by running the
map.

Understanding the Map
Suppose that your company, Mercator’s Fresh Fruit and Open Air Market, keeps the inventory in an
Excel spreadsheet. In the spreadsheet are each product name, its price per pound, the quantity of each,
the total pounds in stock, and the total market value. You need to send some of this data with other
monthly reports to the main office. The problem is to transform the spreadsheet data into a text based
format so that you can transmit it with the rest of your information in a predefined format. Here is the
Excel spreadsheet:

Chapter 17 – Retrieving Information from Other Applications

Design Guide

219

You want to map the first three columns of the spreadsheet—the Product, Unit Price and the Quantity.
You want to map the main data to Full_Chart Item, and the TOTALS row to Totals Item. You use the
DDEQUERY function to retrieve the required data from the rows and columns from the spreadsheet.

The DDEQUERY for Full_Chart Item retrieves the block of data from row 8, column 1 through row 14,
column 3, (in Excel’s default nomenclature, block A8:C14). The map rule is:

=DDEQuery ("excel", "[MKTPRICE.XLS]Sheet1", "R8C1:R14C3")

Chapter 17 – Retrieving Information from Other Applications

Design Guide

220

The DDEQUERY for Totals Item retrieves the block of data from row 16, column 1 through row 16,
column 3, (block A16:C16). The map rule is:

=DDEQuery ("excel", "[MKTPRICE.XLS]Sheet1", "R16C1:R16C3")

When you run the map, you get the expected data:

Note When you run the map, Excel and the spreadsheet file you are retrieving from must be open.

Chapter 18 – Functions that Operate on Text Data

Design Guide

221

Chapter 18 – Functions that Operate
on Text Data
This example uses the text functions FIND, LEFT, MID, and RIGHT.

What You Want to Do
You work for a health care company that has a file of employee names—doctors and nurses. You want
to retrieve only the doctors in this employee file, and generate a new file that lists the doctors and the
hospital where each works.

A doctor is indicated by the “M.D.” after the name. The hospital is indicated by the value in the last byte
of one of the fields in the employee record.

How to Do It
Define the input and output file in a type tree.

Create a map that maps the input file to the output file. To map the data, use the functions FIND, LEFT,
MID, and RIGHT.

Files used in this Example
The following table lists the files used in this example.

File Use

hospital.txt You create this input data file to use as input.

hospital.mtt You create this type tree to define the input and
output.

hospital.mms You create this map source file.

output.txt This output file is created by running the map.

Using the Type Editor
The input data looks like this:

Chapter 18 – Functions that Operate on Text Data

Design Guide

222

Samantha Allibaster, M.D. 111-24-4291 131jja
Kirk Benett, M.D. 314-42-9595 842keu
Valerie Johnson, R.N. 423-11-9188 359iru
Lyle Ropes, R.N. 239-54-5700 879nla
Foster McMann, M.D. 403-67-3920 514ipu

Each employee record contains the employee name, social security number, and an employee code. The
last digit of the employee code indicates the hospital where the person is employed.

Define the input in a type tree.

You want the output data to look like this:

Dr. Samantha Allibaster/Internist/Andrews Hospital
Dr. Kirk Benett/Surgeon/Unitarian Hospital
Dr. Foster McMann//Unitarian Hospital

Define the output data in a type tree.

Fixed, with CR/LF
terminator

Fixed

Fixed

Fixed

Implied

Using the Map Editor

Design Guide

223

Using the Map Editor
In the executable map, the rule on OutputRecord references the functional map MAKE_RECORD. The
only employee records you want to map are the ones that have “M.D.” in the name. You can use the
FIND function.

The FIND function has at least two input arguments. It has an optional third argument. The first
argument is the text you want to find. The second argument is the text object you’re looking at. The
optional third argument specifies the position at which to begin the search. The leftmost byte has
position 1.

The FIND function returns the first position at which the given text occurs. If the text is not found, then
FIND returns 0. The meaning of the FIND function is:

FIND (Text you want to find, text item to look at, [Where to begin the search])

You want to map the employee records for which the FIND of “M.D.” does not return 0.

Delimited, with CR/LF
terminator

Using the Map Editor

Design Guide

224

The map rule for OutputRecord is:

= MAKE_RECORD (EXTRACT (EmployeeRecord:InputFile,
FIND ("M.D.", Employee Field:.:InputFile) != 0))

The executable map looks like this:

The functional map MAKE_RECORD looks like this:

Using the Map Editor

Design Guide

225

To map the Doctor field, use the LEFT, and FIND functions to retrieve everything up to the comma in
the Employee field.

The LEFT function retrieves a certain number of bytes from a text Item, beginning at the leftmost byte
of that Item. The second argument specifies how many bytes to retrieve. The meaning of the LEFT
function is:

LEFT (Text item, Number of bytes to retrieve)

The map rule for Doctor field is:

= "Dr. " + LEFT (Employee Field:EmployeeRecord,= "Dr. " + LEFT (Employee Field:EmployeeRecord,= "Dr. " + LEFT (Employee Field:EmployeeRecord,= "Dr. " + LEFT (Employee Field:EmployeeRecord,
FIND ("," , Employee Field:EmployeeRecord) - 1)FIND ("," , Employee Field:EmployeeRecord) - 1)FIND ("," , Employee Field:EmployeeRecord) - 1)FIND ("," , Employee Field:EmployeeRecord) - 1)

To map the Specialty field, use the MID function. The MID function retrieves a certain number of bytes
from a text Item, beginning at the position specified in argument #2. The leftmost byte has position 1.
The third argument specifies how many bytes to retrieve. The meaning of the MID function is:

MID (Text item, Starting position, Number of bytes to retrieve)

Use the MID function to look at the fourth byte of the EmployeeCode. The value in this field indicates
the specialty of the employee. If the value is “j,” the doctor is an internist. If the value is “k,” the doctor
is a surgeon. Any other value is ignored.

The map rule for Specialty field is:

Using the Map Editor

Design Guide

226

= IF (MID (EmployeeCode Field:EmployeeRecord, 4, 1) = "j", "Internist",= IF (MID (EmployeeCode Field:EmployeeRecord, 4, 1) = "j", "Internist",= IF (MID (EmployeeCode Field:EmployeeRecord, 4, 1) = "j", "Internist",= IF (MID (EmployeeCode Field:EmployeeRecord, 4, 1) = "j", "Internist",
IF (MID (EmployeeCode Field:EmployeeRecord, 4, 1) = "k", "Surgeon",IF (MID (EmployeeCode Field:EmployeeRecord, 4, 1) = "k", "Surgeon",IF (MID (EmployeeCode Field:EmployeeRecord, 4, 1) = "k", "Surgeon",IF (MID (EmployeeCode Field:EmployeeRecord, 4, 1) = "k", "Surgeon",
NONE))NONE))NONE))NONE))

To map the Hospital field, use the RIGHT function to look at the rightmost byte of the EmployeeCode.
If the value is “a”, it’s Andrews Hospital, otherwise it’s Unitarian Hospital.

The RIGHT function retrieves a certain number of bytes from a text Item, beginning at the rightmost
byte of that Item. The second argument specifies how many bytes to retrieve. The rightmost byte is
position 1. The meaning of the RIGHT function is:

RIGHT (Text item, Number of bytes to evaluate)

The map rule for Hospital field is:

= IF (RIGHT (EmployeeCode Field:EmployeeRecord, 1) = "a",= IF (RIGHT (EmployeeCode Field:EmployeeRecord, 1) = "a",= IF (RIGHT (EmployeeCode Field:EmployeeRecord, 1) = "a",= IF (RIGHT (EmployeeCode Field:EmployeeRecord, 1) = "a",
"Andrews Hospital","Andrews Hospital","Andrews Hospital","Andrews Hospital",
"Unitarian Hospital")"Unitarian Hospital")"Unitarian Hospital")"Unitarian Hospital")

Only the doctors were mapped to the output. If the doctor has a specialty, the specialty was mapped.

Index

Design Guide

227

Index
$, 122, 128, 163, 210
.mms file extension, 46
.mtt file extension, 16
[], 128, 163
[LAST]

in a map rule, 213
ALL function

using in a map rule, 201
Analyzing a type tree, 42, 75

errors, 43
Applications

retrieving information from, 215
Breaks in data

by change in data value, 126
by counting objects, 120

Building a map, 65
errors, 66

Card
definition of, 44
input

copying, 86
creating, 48, 76
view of, 51

name, 48, 53
definition of, 53

output
creating, 52, 77
editing, 85, 87, 92
view of, 55

type, 49, 53
definition of, 49

Card name, 48, 53
definition of, 53

Card type, 49, 53
definition of, 49

CHOOSE function
using in a map rule, 114, 155

Component
defining, 36
optional, 70, 145
range

defining, 34
rule, 122, 128

Component range
defining, 34, 73, 75

Component rule, 122, 128, 163
using to partition, 133

Concatenating text in a map rule, 58, 225
Control-break logic

using to define data, 120
Copying

a card, 86, 87
a map, 92

COUNT function
using in a component rule, 122
using in a map rule, 131, 139, 141, 212

Cross-reference file
defining, 97, 104, 170
generating with a map, 106
using in a map, 98, 171

CURRENTDATE function
using in a map rule, 141

Data
breaks

by change in data value, 126
by counting objects, 120

existence
testing in a map, 100

invalid
mapping, 190
recovering from, 185

Data Descriptions, 70
Data file

generating with a map, 106
specifying for an input card, 50
specifying for an output card, 53
viewing, 67

Data objects, 12, 44
defining, 12
optional, 70

DDEQUERY function
using in a map rule, 217

Delimited format
defining, 38

Delimiter
location

defining, 42
Delimiters

defining, 70
DLL

retrieving information from, 215
Documents

Mercator Authoring System, 8
Drag and drop

a type into a component window, 33, 34, 36
an input to an output in a map, 56, 147

EITHER function
using in a map rule, 202

Error file
defining, 190

Errors
build, 66

Index

Design Guide

228

data
mapping, 190
recovering from, 185

run, 67
type tree analysis, 43

Examples directory, 10
Excel spreadsheet

retrieving data from, 217
Executable map

definition, 79
Existence of data

testing in a map, 100
EXIT function

using in a map rule, 215
EXTRACT function

using in a map rule, 93, 160, 224
FIND function

using in a map rule, 223
Function

inserting into a map rule, 62, 88, 93
Functional map

creating, 125, 146, 155, 172, 224
referencing in a map rule, 107
when to use, 79, 146

Functions
ALL, 201
CHOOSE, 114, 155
COUNT, 141, 212
CURRENTDATE, 141
DDEQUERY, 217
EITHER, 202
EXIT, 215
EXTRACT, 160
FIND, 224
IF, 100, 196, 201

nested, 205
INDEX, 155, 210
LEFT, 225
LOOKUP, 106, 202
MID, 225
OR, 196
PRESENT, 61, 100
RIGHT, 175
SEARCHDOWN, 110
SEARCHUP, 112
UNIQUE, 85, 163

Grayed out rule cells, 77
Group

creating, 17
properties

defining, 37
Identifier

using, 133
IF function

nested, 205, 225
using in a map rule, 61, 100, 196, 201

Index
in a component rule, 128, 163
in a map rule, 213

INDEX function
using in a map rule, 155, 181, 209, 210

Inheritance
of type properties, 23

Initiators
defining, 179

Input card
creating, 48
view of, 51

Insert Map/Function command, 62
Introduction, 11
Invalid data

ignoring, 184
mapping, 190
recovering from, 185

Item
creating, 21
properties, 25

defining, 37
LEFT function

using in a map rule, 225
Lookup file

defining, 97, 104, 170
generating with a map, 106
using in a map, 98, 111, 171

LOOKUP function
using in a map rule, 103, 202

Map
building, 65, 82, 89, 94

errors, 66
copying, 92
creating, 44, 76
definition of, 44
functional

referencing in a map rule, 107
when to use, 146

naming, 76
new, 76
renaming, 47
rule

concatenating text in, 58
definition of, 55
entering, 55, 78, 88
formatting, 64
inserting a function into, 62, 88, 93

running, 66, 94
errors, 67

Map rule
concatenating text in, 58
definition of, 55
entering, 55, 78, 88
formatting, 64
inserting a function into, 62, 88, 93

Map source file
opening, 86
saving, 45, 84, 90, 95

Mapping invalid data
to an error file, 189

Mapping multiple files to multiple files, 168

Index

Design Guide

229

Mapping multiple files to one file, 150
Maps

list of in a source file, 47
Mercator

basic steps in using, 8
Mercator Authoring System

documents, 8
Mercator examples, 10
MID function

using in a map rule, 225
Opening

a map source file, 86
Optional data objects, 70, 143, 145

testing the existence of, 100
OR function

using in a map rule, 196
Output card

creating, 52
view of, 55

Partitioned types
defining, 133
mapping, 136

Partitioning
to make map rules simpler, 132

PRESENT function
using in a map rule, 61, 100

Properties
inheriting, 23
of a group

defining, 37, 72
of an item

defining, 25, 37
Range of a component

defining, 31, 34, 73, 75
REJECT function

using in a map rule, 189
Renaming a map, 47
Restart attribute

assigning, 185
RIGHT function

using in a map rule, 175, 226
Rule

component, 122, 128, 163
using to partition, 133

map
concatenating text in, 58
definition of, 55
entering, 55, 78, 88

formatting, 64
inserting a function into, 62, 88, 93

Rule cells
grayed out, 77

Running a map, 66
errors, 67
viewing results, 67

Saving
a type tree, 43
map source file, 45

SEARCHDOWN function
using in a map rule, 110

SEARCHUP function
using in a map rule, 112

Shorthand notation in a component rule
$, 122, 128, 163, 210

Sorting output data, 161
Spreadsheet

retrieving data from, 217
Syntax objects, 38, 40
Terminator

defining, 39
Text

concatenating in a map rule, 58, 225
entering in a map rule, 58, 172, 201

Type
creating groups, 17
creating items, 21
inheritance, 23
of a card, 49, 53

definition of, 49
partitioned

defining, 133
mapping, 136

Type tree
analyzing, 42, 75

errors, 43
creating, 14, 116
for partitioned data, 133
saving, 15, 43, 76

Types
organizing in a type tree, 22

UNIQUE function
using in a map rule, 85, 163

Using Type Editor, 71
Viewing

results of running a map, 67

	Title
	TSI Offices
	Copyright
	Trademarks

	Contents
	Using the Design Guide
	Other Mercator Documentation
	Using Mercator
	Mercator Examples
	Other Examples in This Guide

	Chapter 1 – Mercator Tutorial
	What You Want to Do
	How to Do It
	Files Used in This Chapter
	Creating a Type Tree
	Thinking about the Input
	Thinking about the Output
	Using the Type Editor
	Creating Group Types
	Creating Item Types
	Organizing Types
	Using the Type Tree Inheritance
	Create the Remaining Name Subtypes
	Create the Remaining Field Subtypes

	Defining Components
	Components of Contact
	Components of Label
	Defining the Components of Label
	Defining Item Properties
	Defining Group Properties
	Properties of Contact
	Properties of Label
	Analyze the Type Tree
	If You Have Errors

	Save the Type Tree Again
	Creating a Map
	Map Cards
	Using the Map Editor
	Save the Source File
	Rename the Map
	Create Map Cards
	Enter Map Rules
	Mapping to the Company Field
	Mapping to Street Field
	Mapping to CityStateZip Field
	Mapping to Full Name Field
	Functions Used in Map Rule

	Save the Source File
	Build the Map
	Run the Map
	View Results

	Chapter 2 – Mapping Records
	What You Want to Do
	How to Do It
	Files Used in This Chapter
	Data Descriptions
	Input Data
	Optional Data Objects
	Output Data
	Using Type Editor
	Identifying Properties of File Types
	Define Properties
	Identifying Components of File Types
	Define Components
	Using Map Editor
	Create Cards
	Enter Map Rules

	Chapter 3 - Using the UNIQUE Function
	What You Want to Do
	How to Do It
	Files Used in this Example
	Using the Map Editor

	Chapter 4 - Using the EXTRACT Function
	Case 1 – Extracting Contacts for a Specific State
	How to Do It
	Files Used in Case 1
	Using the Map Editor
	Enter the Map Rule
	Case 2 – Extracting Contacts that are Preferred
	How to Do It
	Files Used in Case 2
	Using the Type Editor
	Create the Lookup Data
	Using the Map Editor

	Chapter 5 - Testing the Existence of Data
	What You Want to Do
	How to Do It
	Files Used in this Example
	Using the Map Editor

	Chapter 6- Using Cross-Referenced Data
	When to Use LOOKUP, SEARCHDOWN, and SEARCHUP
	Case 1 - Using LOOKUP for Unordered Cross-Reference Data
	How to Do It
	Files Used in Case 1
	Using the Type Editor
	Using the LOOKUP Function
	Using the Functional Map Wizard

	Case 2 - Using the SEARCHDOWN Function
	Files Used in Case 2
	Using the Map Editor

	Case 3 - Using the SEARCHUP Function
	Files Used in Case 3
	Using the Map Editor

	Case 4 - Using the CHOOSE Function
	What You Want to Do
	How to Do It
	Files Used in Case 4

	Using the Type Editor
	Using the Map Editor
	Using the Functional Map Wizard

	Chapter 7 - Using Control-Break Logic to Define Data
	Case 1 - Breaking Data by Counting Objects
	What You Want to Do
	How to Do It
	Files Used in Case 1

	Using the Type Editor
	Using the Map Editor
	Case 2 - Breaking Data by a Change in a Data Value
	What You Want to Do
	How to Do It
	Files Used in Case 2

	Using the Type Editor
	Using the Map Editor

	Chapter 8 - Using Partitioning to Simplify Map Rules
	
	What You Want to Do
	How to Do It
	Files Used in this Example

	Using the Type Editor
	Using the Map Editor
	OrdersByDepartment
	ActivityReport

	Chapter 9 - Mapping Optional Inputs
	
	What You Want to Do
	How to Do It

	Files Used in this Example
	Using the Type Editor
	Using the Map Editor

	Chapter 10 - Mapping Multiple Files to One File
	
	What You Want to Do
	How to Do It

	Case 1 – Header and Detail Files in the Same Order
	Files Used in Case 1
	Using the Type Editor
	Using the Map Editor
	Case 2 – The Detail File is Not Sorted by PO
	Files Used in Case 2
	Using the Type Editor
	Using the Map Editor
	Case 3 – Organize the POs by Customer
	Files Used in Case 3
	Using the Type Editor
	Using the Map Editor

	Chapter 11 - Mapping Multiple Files to Multiple Files
	
	What You Want to Do
	How to Do It

	Files Used in this Example
	Using the Type Editor
	Using the Map Editor

	Chapter 12 - Arithmetic Functions and Operators
	
	What You Want to Do
	How to Do It

	Files Used in this Example
	Using the Type Editor
	Using the Map Editor

	Chapter 13 - Ignoring Invalid Data
	
	What You Want to Do
	How to Do It

	Files Used in this Example
	Using the Type Editor
	Using the Map Editor

	Chapter 14 – Mapping Invalid Data
	
	What You Want to Do—Mapping Invalid Data to a File
	How to Do It

	Files Used in this Example
	Using the Type Editor
	Using the Map Editor

	Chapter 15 – Using Logical Functions
	Case 1 – Using the OR Function
	What You Want to Do
	How to Do It
	Files Used in Case 1

	Using the Type Editor
	Using the Map Editor
	Case 2 – Using the ALL Function
	What You Want to Do
	How to Do It
	Files Used in Case 2

	Using the Type Editor
	Using the Map Editor
	Case 3 – Using the EITHER Function
	What You Want to Do
	How to Do It
	Files Used in Case 3

	Using the Type Editor
	Using the Map Editor
	Case 4 – Using Nested IF Functions
	What You Want to Do
	How to Do It
	Files Used in Case 4

	Using the Type Editor
	Using the Map Editor

	Chapter 16 – Incrementing Output Data
	
	What You Want to Do

	Case 1 – Using the INDEX Function
	How to Do It
	Files Used in Case 1

	Using the Type Editor
	Using the Map Editor
	Case 2 – Using the COUNT Function
	Files Used in Case 2
	Using the Map Editor
	Case 3 – Using the Index [LAST]
	Files Used in Case 3
	Using the Map Editor

	Chapter 17 – Retrieving Information from Other Applications
	Using the EXIT Function
	Files Used in this Example
	Understanding the Map
	Using the DDEQUERY Function
	Files Used in this Example
	Understanding the Map

	Chapter 18 – Functions that Operate on Text Data
	Index

