
1

MQSeries Security White Paper

Revision Date: October 23, 1998

Stuart C Jones
MQSeries Technical Strategy
IBM Hursley

stuartc_jones@uk.ibm.com

2

Table of Contents
MQSeries Security White Paper.. 1
Introduction.. 3

Platform Coverage.. 3
The Security Environment .. 4
MQSeries Access Control ... 5

Introduction .. 5
Overview.. 5
MQSeries ‘Checkpoints’... 6
MQSeries Access Control Implementation .. 6

MQSeries User Identifiers... 6
User Identifiers and Groups... 7
MVS Access Control Facilities.. 8
Non-MVS Access Control Facilities.. 9
Differences Between The MVS & Non-MVS Access Control Mechanisms...................................... 10
Alternate Userids .. 10

Access Control Walkthrough .. 11
Platform Level Issues.. 12
MQSeries Message Context Fields.. 13

Distributed Messaging .. 15
Introduction .. 15
Base Channel Security Facilities ... 16

MCA Userids.. 16
Placing Messages on Target Queues .. 17

MQSeries Channel Exits... 18
Additional MQI Client/Server Considerations.. 19
MQCLOSE request ... 21
MQPUT reply... 21
MQBACK request .. 21

Message Level Security .. 22
Introduction .. 22
Issues Associated With Message Level Security..22
Support For Message Level Security... 23

MQSeries Security Directions... 24
Message Level Security .. 24
MQSeries Access Control... 24

Summary.. 26

3

Introduction
The purpose of this document is to explain security in an MQSeries environment and to
give some indications of the directions for the MQSeries product family in the security
arena. This document is divided into 4 sections.

1. Access control and the way that the various MQSeries resources are protected
2. Security for distributed messaging, including the different ways that the

security facilities can be customized.
3. Message level security - in terms of the (limited) existing facilities and the

vendor products available
4. Future directions for security in an MQSeries environment.

Note that it is not the intention to significantly duplicate information that is provided in
the existing MQSeries manuals. Thus, where appropriate, references are included to the
appropriate MQSeries documentation.

Platform Coverage
The facilities described in the document are not applicable to all of the MQSeries product
family. At the time of writing, these facilities are not available on the following products:

• MQSeries for Windows
• MQSeries for unixware
• MQSeries for VSE/ESA
• MQSeries for SCO UNIX

There has been an announcement that updated versions of MQSeries will be made
available for unixware and SCO UNIX. Thus, these facilities will be provided for these
environments in the near future (at the time of writing).

4

The Security Environment
The following diagram illustrates the set of security facilities that might be available in a
secured environment. Not all of these facilities need to be available on each node, though
many will be.

This diagram also shows the relative positioning of the various security facilities. For
example, security services make use of security mechanisms which, in turn, act on
security objects. The focus for MQSeries security is with security services and security
management. MQSeries needs to provide facilities to support the various security
services, though does not implement security mechanisms. Also, MQSeries needs to
implement some security management functions, namely security administration and
auditing.
It is important to note that MQSeries does not get involved with identification and
authentication of users. So, users do not sign on to MQSeries. It is assumed that users
will have identified themselves to ‘the system’ and that ‘the system’ will have
authenticated the user before MQSeries facilities are used. But, MQSeries will propagate
the userid in the header of each message that is put to a queue. Thus, identification
services are provided in this way.

P
O
L
I
C
Y

M
A
N
A
G
E
M
E
N
T

A
U
D
I
T

&

A
L
E
R
T

M
G
M
T

SERVICE
MANAGEMENT

MECHANISM
MANAGEMENT

OBJECT
MANAGEMENT

SECURITY MANAGEMENT
IDENTIFICATION

AND
AUTHENTICATION

ACCESS
CONTROL

CONFIDENTIALITY

DATA
INTEGRITY

NON-REPUDIATION

SECURITY SERVICES

ENTITY
AUTHENTICATION

ACCESS
CONTROL

LISTS

SECURITY
OBJECTS

ENCYPHER/
DECYPHER

MESSAGE
AUTHENTICATION

MODIFICATION
DETECTION

DIGITAL
SIGNATURE

SECURITY MECHANISMS

USERS

GROUPS

PRIVILEGES

AUDIT
LOGS

POLICIES

ENCRYPTION
KEYS

PASSWORDS

SECURITY OBJECTS

5

MQSeries Access Control
Introduction
This section is concerned with access control and the way that MQSeries protects the
resources that it owns. There is a description of what access control measures might be
implemented and what the queue mangers do implement for each platform. This includes
a summary of the principle differences between the implementations. There is also a
walkthrough of the typical path through the access control functions provided by
MQSeries.

Overview
(Probably) the primary purpose of security is to protect resources from unauthorized
access. A major part of this protection is checking whether a user of a system is
authorized to access a particular resource. There are a number of places where this
authorization may be checked:

• Physical checks. Even though the issue under discussion is the protection of
(primarily) software resources, it is possible to physically protect resources. This is
generally achieved by allowing only authorized to users to physically use a machine
– either by controlling access to a building or room in which a system is housed.

• Software checks. There are several points at which the software can control access to
resources.
• Access to the system as a whole; most environments require that users sign on to

a system in some way before any of it’s components may be accessed.
• Access to system definition functions. If a component cannot be installed or

configured then it certainly cannot be used.
• Access to link libraries. It is not possible to access a component

programmatically if the required API cannot be either compiled or linked.
• When programs try to access a component, it is possible to control those users

who are to be granted access.
• When programs access individual resources, it is possible to control those users

who are to be granted access.

The above ‘checkpoints’ are, clearly, hierarchical. It is possible to implement none, one,
many or all of these facilities, as required by the installation. It is the responsibility of
each enterprise to decide which of these facilities are required, dependant upon the value
that they place on the resources to be protected and the level to which they consider that
those resources are exposed. Another consideration will be (should be) the amount of
resource (in financial and human terms) that an enterprise is willing to spend on this
protection…these facilities rarely come for free.

Before any checking can be performed, it is clearly important that there be ‘someone’ to
check up on. Thus it is a requirement of access control that the ‘someone’ who requires
access to resources is identified in some way.

6

MQSeries ‘Checkpoints’
MQSeries (and the operating system) provides facilities to control access to MQSeries
resources. Clearly, neither the operating system nor MQSeries can provide the physical
‘checkpoints’ described above. If these are to be provided, then they are outside the scope
of any software components. In terms of software checks, the following is provided:

• The operating system can control access to program libraries and, therefore, control
access to system installation/configuration programs (such as crtmqm, strmqm,
runmqsc and the MVS batch jobs which set up a system on MVS/ESA) and to the
MQSeries API link libraries.

• MQSeries provides mechanisms to limit access to its own components, as follows:
• MQSeries utilities for the non-MVS queue managers (such as crtmqm, strmqm

and runmqsc) may only be used by suitably authorized users.
• MQSeries controls which users may connect to the Queue Manager (via

MQCONN or MQCONNX)
• MQSeries controls which users may access MQSeries resources and in what

manner those resources may be accessed. The resources which may be controlled
are:
• Queue manager object
• Queues
• Namelists (MVS only)
• Processes
• Channels (MVS only)

Note that, for the majority of queue managers, channels are not MQSeries
objects and so access to the channels may not be controlled.

MQSeries Access Control Implementation
MQSeries provides access control facilities in two different ways, depending upon the
platform. The MVS platform has one implementation and all other platforms have a
separate implementation, common to all of those platforms.

MQSeries User Identifiers
In order to control access to MQSeries resources, the queue manager needs to be able to
identify the user who is requesting access to a particular resource. This identification is
done when an MQSeries application first connects to the queue manager, when
MQCONN (or MQCONNX) is used. The queue manager queries the application
environment to discover which user is associated with the connecting application. The
user identifier returned to MQSeries is that understood by the underlying environment
and may not (necessarily) be the identifier that might be expected. For example, some
environments will return multiple identifiers (see MVS below) and identifiers that the
underlying environment does not recognize will not be returned – such as DCE
principals, userids in some MVS environments, etc.
As noted above, the identifier returned to MQSeries is dependent upon the application
environment. The user identifier returned to MQSeries for different environments is as
follows:

7

• CICS and IMS on MVS
MVS address space userid and user identifier associated with the (CICS or IMS)
transaction.

• MVS Mover
The MVS Mover works in a similar manner to CICS and IMS in that 2 userids may
be used for access control checks. The address space userid and the userid associated
with the message channel agent may be used. For more details, see the section below
on distributed messaging.

• MVS TSO
TSO userid

• MVS batch/TSO
MVS address space userid
Note that all MVS address spaces other than those named above are treated as MVS
batch address spaces.

• UNIX queue managers
User name associated with the connecting process
A UNIX application may have a ‘preset’ user name, known as an effective user name.
This preset characteristic will be in addition to the user name associated with the
actual user of the application, known as the real user name. MQSeries will always use
the real user name for any access control checks that need to be made.

• All other queue managers
Userid associated with the connecting process

• MQSeries and non-MVS transaction monitors
If the application is running in a transaction monitor environment, then the
connection between the application and the queue manager is via the X/Open XA
interface. This interface does not provide a mechanism for passing a user identifier to
the queue manager and so MQSeries assumes a default user name.

User Identifiers and Groups
Most operating environments support the notion of user identifiers belonging to groups.
Depending upon the specific environment the way that MQSeries works with user
identifiers and groups differs:

• MVS supports both userids and groups. When MQSeries performs access control
checks it passes a userid to the external security manager

• UNIX systems support group based security. MQSeries access control lists are based
upon groups only. The groups that a particular user name belongs to are queried and
each group is tested to check its access to the required resource. Only one group (not
all) needs to have access to the required resource.
When a user name is granted access to a particular resource, the user name’s primary
group is included in the MQSeries access control list and not the user name.

• OpenVMS supports the concepts of accounts, users, groups and identifiers! These
concepts are related as follows:

8

• An account is represented by [group number, user number] (values from 1-777).
Thus, account Fred may be represented as [123,005]. An account may be
associated with only one group.

• Accounts may be granted one or many identifiers and a single identifier may be
associated with many accounts. This is similar to the UNIX concept of groups,
though there is no primary identifier for any particular account.

MQSeries controls access to resources based upon accounts and identifiers.
• Windows NT systems support userids and groups. MQSeries access control lists are

based on both userids and groups. Access control checks are the same as for UNIX
except that individual userids may appear in the access control list as well.

• Tandem NSK support user names and group names.

MQSeries recognizes only the first 12 characters of any userid. This is sufficient for most
environments but does not satisfy requirements in all. There is more detail on this subject
in the section on ‘Platform Level Issues’ below.

MVS Access Control Facilities
MVS provides access control facilities via the SAF (System Access Facility) interface.
This is the standard interface used to enable MVS subsystems to provide security
facilities. All of the common external security manager products (both IBM and non-
IBM) conform to the SAF interface and so any of these products may be used with
MQSeries. The list of currently supported products includes RACF, Top Secret and
ACF2...the latter two products being provided by Computer Associates. These products
are usually referred to as External Security Managers, ESMs.
There are 3 main components to the MVS security facilities – security switches, access
control profiles and other facilities.

1. MQSeries implements security switches (i.e. whether or not to use various access
control features) by the use of Switch Profiles. Switch Profiles are regular security
manager profiles and it is the way that the profiles are treated that distinguishes them
from other access control profiles. MQSeries will check for the existence of these
switch profiles – rather than the access that a particular userid has to the profile
(which is the standard use of such profiles). Thus, it is possible to control the type of
checking that MQSeries will perform by creating the appropriate switch profiles.
There are a number of switch profiles, allowing very granular control of just which
MQSeries resource types are checked. (The complete list of switch profiles is
contained in the MQSeries System Management Guide).
There is a further security switch…the RESSEC Profile. This profile controls the
number of userids that will be used for any particular access control check.
Depending upon the access that an address space (MQSeries adapter) userid has to
the RESSEC profile, there may be 0,1 or 2 access control checks made when an
attempt is made to access an MQSeries resource. Note that inappropriate access to the
RESSEC profile may cause either an excessive amount of resource checking or not
enough!

2. MQSeries defines a set of ESM profiles that are used to restrict access to resources
and to commands. Userids are granted access to these profiles as appropriate and the

9

ESM (on behalf of MQSeries) will verify this access when access control checks are
made. The different level of access required to these profiles for each different style
of MQSeries activity is documented in the MQSeries System Management Guide.

3. MQSeries provides a set of (MQSC) commands to control how the above profiles and
userids are used within the queue manager. Because of the expense of continually
accessing the above profiles and the capabilities of each user within an external
security manager, this information is cached. The commands enable the cache to be
completely or selectively refreshed.

Note that all of the profiles referenced above, the switch profiles and the access control
profiles are owned and managed by the ESM and not by MQSeries.

Non-MVS Access Control Facilities
For the non-MVS systems, there is no common mechanism such as MVS SAF (across all
of the platforms) for provision of access control facilities. Consequently, MQSeries
provides its own set of facilities, as follows:

• An access control interface is provided, as an instance of an MQSeries Installable
Service. MQSeries provides a documented interface (called the Authorization
Service) to an access control component. This interface is documented in the
MQSeries Programmable Systems Management Guide.

• An implementation of an access control manager, which conforms to the
Authorization Service interface above. This implementation is known as the Object
Authority Manager, or OAM. The OAM maintains an access control list for each
resource that it controls.
The OAM is passed a principal, a resource name and an access type request. It will
then either grant or reject access based upon the access control lists that it maintains.
This mechanism becomes significant when operating system differences are
considered below.
Note that the OAM may be replaced by any user or vendor written component which
conforms to the Authorization Service interface.

• A set of utility functions to administer the access control lists used by the OAM.
These utility functions are setmqaut, used to define access capabilities and dspmqaut,
used to display access capabilities. These utilities are documented in the appropriate
MQSeries System Administration manual.
These utilities interact with the OAM which means that the queue manager must be
active in order to use the utilities.

10

Differences Between The MVS & Non-MVS Access Control Mechanisms
There are several differences between the MVS and non-MVS implementations, as
follows:
• The MVS queue manager provides more granularity for how much access control

checking is performed – via the switch profiles. The non-MVS queue managers do
not provide any such granularity…security checking is either active or inactive.

• The level of access control granularity provided differs. In some areas, MVS provides
more granular function than the other platforms, particularly for control of MQSeries
administration capabilities. In other areas, the non-MVS queue managers provide the
more granular functions - for instance, in differentiating between get and put
capabilities for a queue.
Note that neither implementation provides a subset of the other.

• MVS provides the ability to have generic access control profiles, spanning many
individual resources (owned by the same queue manager) with a single profile. The
non-MVS queue managers do not support generic profiles for access control
functions. The primary reason for this is that while the MVS implementation provides
a single set of profiles, the non-MVS implementation provides for a separate ACL for
each resource. While this does not implicitly prevent the OAM supporting generic
profiles, they have not been implemented.

• There is a separate instance of the OAM for each queue manager whereas the MVS
ESM may provide services to any number of queue managers on the same MVS
image. This means that there is a separate set of ACLs for each queue manager.
Further, each ACL must be maintained separately (unless some management tool is
used which allows a central point of configuration function). The Tivoli product set
supports this function.

• The MVS ACLs are not directly associated with the MQSeries objects. The first
consequence of this is that MVS ACLs may be maintained without the queue
manager being active. The second consequence is that an MVS ACL may be created
without the associated object existing.

• It is not possible to refresh the access control cache or userid cache for the non-MVS
queue managers. If access control permissions or userid capabilities are changed then
the queue manager must be re-cycled.

Alternate Userids
As described above, the user identifier which the queue manager uses for access control
checks is, generally, a userid obtained from the operating environment. When an
application issues an MQCONN, the queue manager queries the operating environment
for the userid associated with this application. This userid is retained and used for access
control checks. There is an exception to this mechanism; a suitably authorized
application may issue an MQOPEN (or MQPUT1) specifying an alternate userid. Thus,
USER1 may issue an MQOPEN specifying USER2 as an alternate userid and any access
control checks will be made on USER2, not USER1.
Future use of this alternate userid is then platform specific:

11

• For non-MVS systems, the alternate userid is used only for access control checks on
the object being opened. Specifying an alternate userid does not change the userid
associated with an application. Thus, for the above example, any messages put to a
queue opened using USER2 will (by default) contain USER1 in the MQMD context
fields (explained below).

• For MVS systems, the alternate userid is used in subsequent operations for that object
handle. Using the above example again, if a queue is opened with alternate userid
USER2 then any MQPUT operations will have MQMD.UserIdentifier set to USER2.

The authorization to use an alternate userid is specified via the appropriate access control
mechanism (RACF profile, setmqaut, etc). Note that, for MVS, USER1 requires specific
permission to use USER2. For non-MVS platforms, permission to use any alternate
userid is all that is required.

Access Control Walkthrough
Given the above mechanisms for controlling access to MQSeries resources, it is useful to
walk through the process that occurs for a typical application trying to access MQSeries
resources. The description below assumes that, for MVS, all access control checking is
active:
• MQCONN/MQCONNX

This is the first point at which an application will be associated with a particular
queue manager. As a part of connect processing the queue manager interrogates the
operating environment to discover the user identifier associated with the application.
This may be a query to the operating system or to a transaction manager such as CICS
or IMS. MQSeries will verify that the user identifier returned by the operating
environment is authorized to connect to the queue manager. The user identifier is then
retained for any future access control checks.
The user identifier which is returned will be the one understood by the base
environment. This means that – today – MQSeries will not recognize a DCE principal
or any other identifier that is not recognized by the base system.

• MQOPEN/MQPUT1
MQSeries objects are accessed by opening the resource and then issuing commands
against the resource. This is true whether the MQOPEN/MQPUT1 is explicitly or
implicitly performed. All resource checks are performed at the time the object is
opened, using MQOPEN or MQPUT1, rather than when the resource is actually
accessed. It is for this reason that the MQOPEN (or MQPUT1) must specify the type
of access that is requested (i.e. GET, PUT, BROWSE, INQUIRE, etc.).
The resource for which access permission is checked is the resource named on the
MQ API command. If this resource is an Alias or Remote queue definition, the
resolved resource is not checked. This means that a user does not require access to a
resolved queue such as a transmission queue. A further implication of this is that
MQSeries administrators should restrict those users who are permitted to define
(particularly) alias or remote queues.
If the object being opened is explicitly referenced such that both the queue and queue
manager names are provided then the transmission queue associated with the target
queue manager is the resource for which access is checked.

12

• MQPUT/MQGET
No access control checks are performed.

• MQCLOSE
If an MQCLOSE will result in a dynamic queue being deleted then there will be a
check that the user identifier is suitably authorized to delete the queue. This is the
only exception to the rule that all API access control checks are performed at
MQOPEN/PUT1

The access control permissions required for each type of access to MQSeries objects are
documented in the appropriate Systems Administration Guide for the MQSeries platform
in question.

Platform Level Issues
There are a number of platform specific exceptions to the above text, as follows:

• The Tandem NSK environment has two different levels of security support,
depending upon the software available on the particular NSK system.
• If the base level of security support is available then a Tandem user is represented

as ‘group-name.user-name’ … the user and the group to which that user belongs.
Both the group-name and the user-name are up to 8 (case insensitive) characters
in length and a user may be associated with only one group. Clearly, it is not
possible to accommodate both of these values in the 12 character MQMD field.
So, MQSeries recognizes the group-name only for security processing, the user-
name is ignored.
This means that MQSeries for Tandem NSK does not operate seamlessly in a
heterogeneous environment as messages from different users (in the same
Tandem group) will have the same group-name in MQMD.UserIdentifier and so it
will not be possible to distinguish which user put the message.

• If the Tandem SAFEGUARD product is installed then a particular user may be a
member of more than one group and the user may be represented by a (case
sensitive) 32 character Alias.
When SAFEGUARD is used, MQSeries is not able to take advantage of any of
these advanced features.

Both of the above issues, support of heterogeneous operations and support of Tandem
SAFEGUARD will be addressed in a future release of the MQSeries for Tandem
NSK product.

• The Windows NT platform has two significant differences from many other operating
systems with respect to security:
1. Windows NT user identifiers are up to 20 characters in length and may contain

embedded blanks.
2. Windows NT user identifier may be domain qualified – the same userid may exist

in more than one NT security domain and the each instance of the userid is
distinct, allowing differing access control permissions.

13

While it is likely that NT V5 will ease the issue of domain qualified userids, there is
still the issue of the format of the userid itself. Currently, MQSeries will recognize up
to 12 characters of an NT userid and any userid will be ‘blank delimited’ (and so may
not contain embedded blanks). In many instances this is an acceptable limitation as
the primary use of MQSeries is heterogeneous processing and most other operating
systems do not recognize blank embedded or long userids. However, this is a
limitation which cannot be allowed to continue, particularly for NT only
environments, and will be corrected in a future MQSeries release.

MQSeries Message Context Fields
When a message is put on a queue, there is security context information associated with
the message. This context information in placed in the MQ Message Descriptor, the
MQMD. There are 8 fields, divided into two sections, as follows:

1. Identity Context
• UserIdentifier

This is a 1-12 character field which contains the userid associated with the putting
application. For userids which are longer than 12 characters there are platforms
specific approaches, documented above.

• Accounting Token
This field is used to identify the instance of the application which has generated
the message. If not set, the queue manager will set an environment dependent
value which is documented in the MQSeries Application Programming Reference.

• ApplIdentityData
This is application dependant data and MQSeries does not define its format or
place a default value in it. It may only be used by suitably authorized applications.

2. Origin Context
• PutApplType

This is the type of application which has PUT the message and identifies the
environment in which the application was running, such as CICS, IMS, AIX,...

• PutApplName
This is the name of the application which has PUT the message and will be the
first 28 bytes of the fully qualified pathname for most environments and a
transaction ID where appropriate.

• PutDate
The format is YYYYMMDD, GMT. Note that MQSeries date formats are year
2000 ready.

• PutTime
The format is HHMMSSTH, GMT

• ApplOriginData
This is application dependant data and MQSeries does not define its format or
place a default value in it. It may only be used by suitably authorized applications.

14

The MQMD is passed to the queue manager by the application. Thus the MQMD is an
input parameter for MQPUT/MQPUT1. However, the context section of the MQMD may
only be populated by the application if that application is suitably authorized so there is
no security exposure associated with having the context fields as a part of the MQMD.
An application must open the target queue with the appropriate options for modifying the
context fields and put messages using the appropriate options. This leads to 3 possible
failure scenarios:

1. If an application attempts to open a queue using the appropriate options and is not
suitably authorized, the open will fail with return code
MQRC_NOT_AUTHORIZED.

2. If the queue is opened without specifying the appropriate options and attempts to
populate the context fields without specifying the appropriate MQPUT options, the
values in the MQMD context fields are ignored.

3. If the queue is opened without specifying the appropriate options and attempts to
populate the context fields specifying the appropriate MQPUT options, the MQPUT
fails because the options for MQOPEN and MQPUT are inconsistent.

The mechanism for controlling access to the MQMD context fields is fully documented
in the MQSeries Application Programming Guide.

15

Distributed Messaging
Introduction
The MQSeries distributed messaging component may be represented by the following
diagram:

This component is responsible for passing messages to partner queue managers and
receiving messages from partner queue managers. It is made up of the following
components:

• Transmission Queue
The transmission queue (also known as an XmitQ) is the local queue on which
messages are safe-stored before being passed to a partner queue manager. An XmitQ
is just like a regular MQSeries local queue except for the USAGE parameter, which is
set to XMITQ.

• Message Channel Agent
The MCAs provide the functions which reliably exchange messages with other queue
managers and which provide the linkage between MQI clients and servers. A pair of
MCAs – one in the sending queue manager and one in the receiving queue manager -
is known as a channel.
The MCA which initiates the channel is known as the caller MCA. The partner MCA
is known as the responder MCA.
MCAs are (privileged) MQ applications and are subject to the same resource access
controls as any other application.

• Channel Initiator
This component is responsible for starting caller MCAs when the queue manager
administrator has configured the channel for automatic initialization. (This is done by
defining the transmission queue as a triggered queue).

• Listener
When MCAs connect to one another, it is advantageous (required, really) to have a
component on the ‘receiving’ queue manager which provides automatic initialization

QM1

Transmission
Queue

Initiation
Queue

CHANNEL
INITIATOR

START

QM2
SESSION
REQUEST CHANNEL

LISTENER

MCAMCA

Channel

START

Application Queues

16

of the responder MCA. This allows the message exchange process to be automated.
In some cases, this listener is a part of the underlying transport mechanism, such as
TCP/IP’s inetd (a transport listener). In other cases, it is provided by the queue
manager (an MQSeries listener).

On MVS/ESA, the distributed messaging component is usually provided by an address
space known as the MVS Mover (or CHINIT…for channel initiator). This is a separate
address space from the queue manager address space and implements all of the above
components (except for the transmission queues which are a part of the queue manager).
It is also possible to provide distributed messaging via a set of CICS/ESA transactions,
though this is rarely used today and is not the recommended component. These CICS
transactions will not be discussed further. On the non-MVS queue mangers, the above
components are all provided as separate entities (i.e. processes or threads).

The distributed messaging component provides a minimal set of security features. A
further set of security features is enabled via the MQSeries exits.

Base Channel Security Facilities

MCA Userids
The MCAs are simply specialized MQSeries applications. As such, they access
MQSeries resources and require a user identifier in order to enable such access control to
be enabled. As with other applications, the user identifier associated with an MCA is
environment dependent, as follows:

• Caller MCAs
These MCAs are started either as individual processes, as a thread of the (non-MVS)
channel initiator or as a dispatchable unit of the MVS Mover. The user identifier
associated with the caller MCA is the user identifier associated either with the parent
process (for threads) or with the process causing the MCA to be started.
In general, this userid requires access to the queue manager, the XmitQ, the DLQ and
any resources which may be accessed by channel exits, which are discussed below.

• Responder MCAs
These MCAs are started as a result of a request from a caller MCA. Like caller
MCAs, responders may be started either as individual processes, as threads of the
(non-MVS) MQSeries listener or as a dispatchable unit of the MVS Mover. There are
two additional considerations for responder MCAs:
• The caller MCA may indicate the userid to be used for the responder (known as

the network userid as it arrives from the partner MCA over the network). This is
available if the transport is APPC, conversation level security is being used and
the responder MCA is not started as a (non-MVS) thread.

• The configuration of the responder MCA may specify the user identifier that
MQSeries is to use for this responder MCA. The MCAUSER parameter of the
Channel definition is used.

Thus the user identifier associated with a responder MCA may be any of the user
identifier associated with the parent process (for threads), with the process causing

17

the MCA to be started or with the caller MCA, via the network userid. The preference
order used is network userid, MCAUSER and finally the owning/starting process
userid.

MVS provides a further extension to this by associating two userids with responder
MCAs. The first userid is intended to be for the network userid and the second for the
MCAUSER. In both cases, the process userid (userid associated with MVS Mover
address space) is used if network userid or MCAUSER is not available. When access
control checks are performed for responder MCAs, there are then 2 checks to
perform…one for each userid. Provision of two userids may make setup of MCA
within the MVS Mover quite complex. The way that this setup should be handled is
documented in the security section of the MQSeries for MVS System Management
Guide.

Placing Messages on Target Queues
When an MCA puts messages on a target queue, it is necessary for the receiving MCA to
open the target queue and put messages on it. The MCA uses the MQSeries API and,
therefore, may involve access control checks. There is a choice of userids available for
this authorization check; there is a userid (two for MVS) associated with the MCA and
there is a userid associated with the incoming message – the UserIdentifier from the
MQMD context fields. The choice of which userid to use is a configuration option for
each channel – the PUTAUT parameter (for PUT authorization) of the Channel
definition.
The choice made may have a significant effect on the number of user identifiers that a
receiving system needs to be aware of.

• If PUTAUT(DEFAULT) is selected then the userid associated with the receiving
MCA is used. This will be a userid that is already defined on the local system.

• If PUTAUT(CONTEXT) is selected then the userid associated with the message is
used. This will (very likely) be a userid from a remote system which must be
recognized by the local system. The consequence of this is that (possible very many)
userids from remote systems need to be recognized (and, therefore, defined) on the
local system. This may be a significant management overhead.

For this reason, receiving MCAs are often configured to use PUTAUT(DEFAULT),
though this is certainly not a requirement.

18

MQSeries Channel Exits
MQSeries channels provide a set of exit points enabling a channel to be customized, as
follows:

Although the exits are not specifically oriented toward security, a number of the exits can
provide security enhancements for MQSeries channels, as follows:

• Security exit
The security exit is intended, primarily, for (mutual) authentication of partner MCAs
when they connect to one another. This exit is invoked after the MCAs have
connected but before any user data is exchanged. The exits are (almost) invariably
implemented as a complementary pair – one for each MCA, though this is not an
absolute requirement. The exits may have an arbitrary exchange of data (from the
viewpoint of the MCAs) in order to verify the identity of the partner MCA. Once the
exits are satisfied that the partners are genuine, message data may be exchanged
between the MCAs.
The naming of this exit is misleading as the implication is that it is only for security
and that all security functions need to be performed within it. Both of these are
incorrect. Because the data exchange is arbitrary, any exchange is possible and so
functions unconnected with security may be implemented. (MQSeries Supportpac
MS05 is a good example of a non-security function). Also the exit does not have any
access to message data and so cannot enable any message level security functions
such as encryption.
So, the primary (security) function of a security exit in the server/server environment
is MCA authentication. There is a further (security) function in the client/server
environment and this is discussed below.

• Message exit

QM1 QM2

MCA MCA

Message Flow

Channel

Transmission
Queue

Application
Queues

SECURITY SECURITY

MESSAGE MESSAGE

SEND

MESSAGE
RETRY

RECEIVE SEND

RECEIVE

19

The message exit is called once for each message (in each MCA) and has access to
both the MQSeries message headers and the message data. This exit is useful for
functions which require access to all of the message data, rather than a portion of it.
Some enterprises choose to use the message exit for signing messages, adding data
integrity tokens or for encrypting data.

• Send/Receive exit
Because MQSeries allows message sizes greater than the capacity of the underlying
transport, it is sometimes necessary for the MCA to segment messages before sending
to the partner MCA – which will reconstitute them at the receiving side. For each
segment, the send exit is called at the sending MCA and the receive exit called at the
receiving MCA.
Usually, the send/receive exits are used where the structure of the message data is not
significant. In fact, MQSeries does not expose the data content of each segment so it
is important to treat each segment as an opaque ‘blob’. But, it is quite possible to
implement security functions such as signing messages, adding integrity tokens and
encryption within the send/receive exits if required.

• The Message Retry Exit is not applicable to security functions and so is not discussed
here.

There are a few points to note regarding the usage of these exits:

• Although the exits are represented as pairs in the above diagram, there is no absolute
requirement that exits be implemented in this way. It is possible, for instance, to
encrypt a message in a sending message exit and to decrypt the message in an
application.

• If the message exit is used for encryption, the message headers (MQXQH, MQMD)
should not be encrypted. This is because data conversion for the message headers
takes place either after the sending message exit is called or before the receiving
message exit. If the headers are encrypted then the conversion will fail and the
channel will stop.
MQSeries message header conversion takes place at this point in the processing
because the message exit is permitted to modify the header data.

• In general, the channel exits are user or vendor supplied. MQSeries V5 is an
exception in that security, message and send/receive exits are supplied to provide
authentication and encryption services. These exits require that a DCE environment is
present.

Additional MQI Client/Server Considerations
The MQI client/server environment uses MCAs and channel exits for communication
between the client and the server. For this environment, there are some additional
security considerations with respect to the exits.

The purpose of the client/server component of MQSeries is to package and transport MQ
API requests and responses between the client application and the SVCONN MCA which

20

is acting as a proxy on behalf of the client. For some environments, it is important that
the security context (the user identifier) of the client is transferred to the proxy as well. In
this way, any commands executed by the proxy will use the authority associated with the
client userid and not the default userid of the proxy. There are three ways of achieving
this with today’s queue managers:

1. Define a unique SVRCONN channel for each client and specify the MCAUSER
parameter in the Channel definition to be that of the client. While this is certainly
possible, it is not a particularly workable (scalable) solution, particularly from the
systems management viewpoint.

2. Each client has an environment variable, MQ_USER_ID, available. If this
environment variable exists then it will be passed to the SVRCONN MCA and may
be used as the userid of the proxy only if the SVRCONN MCAUSER is blank. The
consequence of this last statement is that the server has control of whether or not the
client userid environment variable is used.
Use of the environment variables for security (authentication) purposes is not
recommended, as they may be set by any user (authorized or not). The environment
variables will be removed in a future release of the queue manager.
Currently, the default value of MCAUSER, for a SVRCONN channel, varies by
platform and release level. For MQSeries V2, the default usually is a low privilege
user such as ‘nobody’ on UNIX. For MQSeries V5 and MQSeries on MVS, the
default value is blanks. Now, while this make for easier connection to the server
queue manager, it is a significant security exposure and should be changed for
systems which need to restrict which users may access the server queue manager.

3. The security exits may be used to pass the client userid to the server proxy. As
mentioned earlier, the security exit data exchange is arbitrary and so may include a
userid which can be used by the proxy. If the security exits are used, it is up to the
SVRCONN exit to decide if the client userid should override any value in the
MCAUSER parameter of the SVRCONN Channel definition.

It should be noted that the access control checks carried out for the proxy that use the
ACLs associated with the server queue manager. If the client userid is passed to the
server, measures should be taken to ensure that the capabilities of this userid are
appropriately set up for that particular queue manager. This becomes especially important
if the client is able to connect to several queue managers.

As explained above, the client server protocol is concerned with packaging and
transporting MQ API requests and responses between client and server proxy. As such,
messages are not explicitly passed across the connection. For this reason, there is no
message exit available for the client server connection. Therefore, if any security
functions are to be applied to the data passing between client and sever, this must be
implemented in the send/receive exits. This may present a problem, as the data format
passed between client and server is not exposed. This, in turn, makes it difficult to
identify the data flows that contain user data – the part which most enterprises are
interested in protecting. In order to ease this problem, the client/server data format is
being partially exposed. The 10th byte of all client/server data exchanges identifies the

21

type of data segment being transmitted. From the viewpoint of the MQ API, the
significant values for this byte are:

MQ Command Value Notes

MQCONN request
MQCONN reply
MQDISC request
MQDISC reply
MQOPEN request
MQOPEN reply
MQCLOSE request
MQCLOSE reply
MQGET request
MQGET reply
MQPUT request
MQPUT reply
MQPUT1 request
MQPUT1 reply
MQSET request
MQSET reply
MQINQ request
MQINQ reply
MQCMIT request
MQCMIT reply
MQBACK request
MQBACK reply

X’81’
X’91’
X’82’
X’92’
X’83’
X’93’
X’84’
X’94’
X’85’
X’95’
X’86’
X’96’
X’87’
X’97’
X’88’
X’98’
X’89’
X’99’
X’8A’
X’9A’
X’8B’
X’9B’

1,2
1,2
1
1
3
3

4
4
4
4
4
4

Notes:
These are not the only values of this byte. All other values are undocumented and
reserved.

1. The connection between the client and server is initiated by the client application
issuing MQCONN. Thus, for this command in particular there will be several other
network flows.
Similar considerations apply to MQDISC, which terminates the network connection.

2. MQCONNX is treated as MQCONN for the purposes of the client/server connection.
3. If a (quite large) distribution list is being opened, there may be more than one

network flow per MQOPEN in order to pass all of the required data to the
SVRCONN MCA.

4. If the message data exceeds the transmission segment size then there may be
(possibly very) many network flows per single API command.

22

Message Level Security
Introduction
The MQSeries channels and the exits enable messages to be protected while in transit
between queue manager components. However, messages will not be protected in any
way while on queues – either in the source, intermediate or target systems. Because of
this there is an increasing requirement, within messaging systems, to provide security
functions at the message level, as opposed to providing functions at the queue manager or
channel level. The functions that are required are as follows:

• Message level authentication
Although the MQMD always contains a userid, there is no token present to
authenticate that userid. Particularly if the message has come from a remote system,
there may be a need to ensure that the userid in the MQMD is valid.

• Message integrity
In order to guarantee that the message has not been altered since it was created by the
putting application

• Message privacy
In order to guarantee that the message cannot be viewed once it is created by the
putting application

• Non-repudiation
To provide both digital signature and digital receipt for the data in a message.

This section will look at some of the issues associated with message level security and
some of the ways that these functions might be implemented in today’s queue managers,
which do not provide this level of function in the base products.

Issues Associated With Message Level Security
• The first (minor) issue with message level security is with naming. Message level

security is synonymous with end-to-end security and application level security.
• The primary issue associated with message level security has been the fragmentation

of the distributed security environment. Put simply, with the large number of different
platforms available and different levels of security functions available, there has
never been any assurance that a message encrypted on one platform could be
decrypted on the receiving platform. In an homogeneous environment (for example,
Windows NT), it is usually a valid assumption that similar facilities would be
available on source and target. This is not true in a generalized, heterogeneous
environment.

• If messages are protected in an end-to-end style, then there may be issues if messages
are incorrectly routed and placed on a dead letter queue on some intermediate (or the
sending) queue manager. Particularly, if the message is encrypted, only the target
system is likely to be able to process (eg. re-route) the message data.

23

Support For Message Level Security
MQSeries does not currently support message level security functions. So, if an
enterprise needs these functions, what is it to do? There are several options for existing
enterprises, as follows:

• Use of MQSeries Channel exits
While is it is (correctly) stated above that the channel exits do not provide true end-
to-end protection of data, it would be possible to regard the exits as providing end-to-
end function in the following manner; if an enterprise has determined that the
communications infrastructure is the only exposure in the system, then use of the
channel exits for end-to-end security could be justified.
It is likely that enterprises like this are extremely rare!

• Each application could implement any message level functions that are required. This
would be independent of the MQ API and the queue manager would treat the
processed data just as it would treat unprocessed data. There are a few enterprises for
whom this is an applicable (in fact the only possible) solution. These are usually
enterprises that are particularly concerned with protection of their own data.
It is clear that the above enterprises are in the minority!
Any enterprise considering implementing protection of data in this way needs to be
aware of data conversion considerations:
• If security tokens (such as a remote authenticator or integrity token) have been

added to the data then any data conversion to be performed must be aware of the
presence of these tokens.

• Integrity tokens are usually generated from a binary image of the data. Any data
conversion of the data may invalidate the original integrity token.

• If the data has been encrypted then any attempt to convert the data as a part of
MQGET is unlikely to be successful.

• Many MQSeries enterprises are making use of high level APIs that encapsulate the
MQ (and other) APIs. There are many reasons for this, though the most common are
either to hide advanced MQ API functions from programmers or to add function to
the MQ API. One of the functions that might be added to the MQ API is security.
The relevant functions could be implemented ahead of MQPUT and after MQGET.
This might be considered equivalent to implementing message level security within
each application, as mentioned above. The primary difference is that a high level
API is implemented and maintained centrally, rather than separately for each
application. Note, however, that the considerations for application data conversion
mentioned above still apply.
There are vendor supplied products which provide high level APIs above the
MQSeries API and provide this level of security function.

24

MQSeries Security Directions
Message Level Security
It is intended that MQSeries properly support message level security within the base
product. This will require the ability to support the security functions mentioned in the
previous section below the MQ API. There are two industry developments that make
implementation of this function a viable proposition:

• As mentioned above, the distributed security environment has been fragmented, with
no assurance of common function across a set of heterogeneous platforms. The Open
Group has published a new security standard called Common Data Security
Architecture, CDSA, which defines a common set of Public Key Infrastructure (PKI)
facilities which are guaranteed to be available on any platform implementing CDSA.
This standard is endorsed by Intel, Hewlett Packard, IBM and many others. IBM
already has implementations of CDSA available on some platforms...the IBM
Keyworks product.
The Open Group specification for Common Data Security Architecture is ISBN 1-
85912-194-2.

• One of the main difficulties with some existing security APIs (such as GSS-API) is
that they are dependent upon a connection to the partner system. This means that they
operate satisfactorily at the MQSeries channel layer (where they are used in the
MQSeries V5 channel security exits) but are not useful for a general asynchronous
message queuing model.
The Internet Engineering Task Force, IETF, has been working on extensions to the
GSS-API to provide support for asynchronous messaging applications. The IETF is
defining Independent Data Unit Protection, IDUP, which encompasses all of the
message level security functions detailed above. IDUP-GSS-API is documented by
the IETF under the following document number draft-ietf-cat-idup-gss-07.txt and
draft-ietf-cat-idup-cbind-03.txt .

While it would be possible to provide MQSeries message level security functions using
only the APIs provided within CDSA, the task is made significantly simpler by the
implementation of the IDUP-GSS-API on the CDSA APIs and this is the intention. It will
provide the following facilities:

• Use of industry standard specifications to provide message level security functions
• Ability to ‘plug in’ various low level security functions (such as hardware or software

encryption routines) below CDSA implementations.

Further, it is the intention to make the use of IDUP-GSS-API and CDSA implementations
optional. This means that it will be possible to ‘plug in’ other message level security
functions if CDSA is not the desired implementation.

MQSeries Access Control
There are a number of aspects related to access control that might be enhanced. Probably
most important among these is the support of userids longer than 12 characters, most

25

common in the Windows NT environment. This issue is compounded in the NT
environment by the possibility that the same userids might be present in multiple NT
security domains with different characteristics.
The issue of supporting longer userids will be addressed within the queue manager.
Windows NT V5 plan to address duplicate userids across multiple NT security domains
by having unique userids in a managed NT environment.

26

Summary
MQSeries has a reputation within some (ill-informed) environments for having no
security. While it is not suggested that MQSeries currently has a complete set of security
functions, it should be clear from this document that MQSeries does implement a
significant set of security functions – particularly with respect to access control – and
does enable many other security functions to be added to the functions provided as a part
of the base. It is a testament to the success of the MQSeries product family that
independent software vendors are providing value-add security functions.
Further, there are MQSeries Development plans to address some of the deficiencies in
MQSeries security functions, particularly in the area of message level security functions.

