

High-performance Messaging with JMS

A Benchmark Comparison of
Progress SonicMQ and IBM MQSeries

 Point Solutions
297 Allston Street

Cambridge MA 02139

 Page 2 of 13

CONTENTS

Introduction ... 3

Test Description and Methodology ... 3

Usage Models and Performance Graphs .. 4

Analyzing the Results.. 7

Performance Considerations .. 9

Conclusion... 10

Appendix A: Detailed Test Results.. 11

Appendix B: Test Environment ... 12

About Point Solutions
Point Solutions is a consulting firm focusing on Internet-based commerce and large-scale system design

technologies. The company’s clients include software vendors and Internet startups as well as utility and

insurance companies. Recently, Point Solutions developed a logistics system for international product

delivery and designed reporting and transactional systems that were deployed on a nationwide scale.

Copyright 2000 Point Solutions. All rights reserved.

IBM and MQSeries are registered trademarks of IBM Corporation. Java is a trademark of Sun Microsystems Inc.

Progress is a registered trademark and SonicMQ is a trademark of Progress Software Corporation. Windows and

ActiveX are registered trademarks of Microsoft Corp. All other company and product names are the trademarks or

registered trademarks of their respective companies.

 Page 3 of 13

INTRODUCTION

The Sun Microsystems Java Message Service (JMS) specification defines the programming interface for a

messaging system that uses Java-based clients. With this new interface standard, users can now compare

messaging systems on a one-to-one basis, regardless of whether or not they are completely written in Java.

One critical measure of a messaging system is its performance and scalability under heavy workloads. This

paper defines real-world scenarios in which messaging may be used, and provides a detailed performance

comparison between Progress SonicMQ and IBM MQSeries.

Progress SonicMQ
SonicMQ from Progress Software is a recent entry into the messaging market. SonicMQ provides a full

JMS implementation of publish/subscribe and point-to-point messaging that is written entirely in Java. In

addition to a native Java JMS client, SonicMQ also provides an ActiveX/COM client. (A C client is

currently in beta test.) The messaging clients communicate with one or more Message Brokers, which are

implemented in Java and tested on a number of different platforms.

IBM MQSeries
MQSeries from IBM is one of the most established messaging products in the industry. MQSeries has

traditionally been oriented towards queue-based messaging, but was enhanced in late 1999 to support

publish/subscribe messaging and a JMS interface. The MQSeries JMS client is a native Java

implementation and does not require any platform-specific code. The messaging clients communicate with

one or more Queue Managers, which are implemented in native code and are available for a wide range of

platforms.

TEST DESCRIPTION AND METHODOLOGY

Performance was measured under maximum load by sending messages as quickly as possible within each

test configuration, using “out-of-the-box” default settings for each messaging product. Test were conducted

under the following conditions:

• All tests were repeated until the recorded test data from multiple runs varied by less than 1%.

• Each client was run in a single JMS connection.

• All results were recorded after client connections, publishers, and subscribers were established.

• Except during the many-to-one tests, no client machine exceeded 75% CPU utilization.

• Auto acknowledge and asynchronous message receipt were used at the message consumers.

• Each product’s message store was emptied between tests. In SonicMQ this was done by reinitializing

the database and log files. For MQSeries, all queues (including those used for publish/subscribe) were

cleared of messages using the JMS administration tool.

 Page 4 of 13

USAGE MODELS AND PERFORMANCE GRAPHS

The following usage models describe typical application scenarios where messaging servers may be

deployed. Though not complete, this list reflects the varied performance characteristics of messaging

applications and allows us to examine the relative performance impact of different messaging

configurations.

The following graphs represent selected test results using durable, persistent messages. For a complete list

of test results, see Appendix A. For a detailed description of the hardware and software test environment,

see Appendix B.

Bulk Data Transfer: One-to-One (Publish/Subscribe)
Transferring bulk data between applications or databases typically implies a one-to-one relationship, e.g. a

manufacturer sending upcoming shipment information to a distributor. In a messaging environment, one-to-

one implies a single message producer sending information to a single consumer. Each message is sent to

one predefined destination that is associated with a specific sender/receiver pair.

0

100

200

300

400

500

600

700

800

900

M
es

sa
ge

s
pe

r S
ec

on
d

(M
PS

)

1 100 250

Number of Sender/Receiver Pairs

One-to-One (Publish/Subscribe)

MQSeries SonicMQ

Broker Services: One-to-Many (Publish/Subscribe)
Reliable information delivery to a wide audience is the basis for many of today’s leading Web-based

brokerage applications. Users indicate interest by subscribing to specific topics; messages published to

those topics are automatically sent to all registered subscribers. An application may require that each

message be guaranteed to arrive at each recipient (e.g. a stock transaction that must update multiple back-

office systems), or it may allow some messages to be lost (e.g. a stock ticker that updates prices every few

seconds).

 Page 5 of 13

0

500

1000

1500

2000

2500

3000

3500

M
es

sa
ge

s
pe

r S
ec

on
d

(M
PS

)

100 1000
Message Size (Bytes)

One-to-Many (Publish/Subscribe)

MQSeries SonicMQ

Service Call Dispatch: One-to-Many (Queue)
A field service organization would typically use a one-to-many queuing model to dispatch service call

requests to remote service technicians. A number of recipients may request messages from a specific queue.

Unlike publish/subscribe, only one recipient will receive each message, ensuring that each technician

receives unique service calls. Messages are delivered on a first-come/first-served basis, and requests (even

for an empty queue) are saved until a new message is available.

0

50

100

150

200

250

M
es

sa
ge

s
pe

r S
ec

on
d

(M
PS

)

100 1000
Message Size (Bytes)

One-to-Many (Queue)

MQSeries SonicMQ

 Page 6 of 13

Sales Office Reporting: Many-to-One (Queue)
A many-to-one queuing model may be utilized when collecting sales data from remote offices for reporting

or data warehousing purposes. Messages may accumulate from many sources into a single location, and

may be handled at an appropriate time by the message recipient. When guaranteed messages are required,

the sender does not need to wait for the recipient to process the message before being assured of its

delivery.

0

20

40

60

80

100

120

140

M
es

sa
ge

s
pe

r S
ec

on
d

(M
PS

)

100 1000
Message Size (Bytes)

Many-to-One (Queue)

MQSeries SonicMQ

Online Auctions: Many-to-Many (Publish/Subscribe)
In online auctions, information is communicated from each bidder directly to each participant in the

auction. Using publish/subscribe in a many-to-many model is similar to one-to-many, except that each

recipient is also a message sender. All messages are sent and received on a single topic, and every

messaging client shares information with all other clients.

0

100

200

300

400

500

600

M
es

sa
ge

s
pe

r S
ec

on
d

(M
PS

)

100 1000
Message Size (Bytes)

Many-to-Many (Publish/Subscribe)

MQSeries SonicMQ

 Page 7 of 13

Web Server Integration: Many-to-Many (Queue)
Robust Web sites typically require the effective integration of multiple Web servers with multiple

application servers. Using many-to-many queuing, each Web server can make processing requests to the

application servers by sending messages to a queue on which they all listen. An application server (or

queue receiver) will listen for requests only when it is able to process them; only one server will ever

process a given request. A specific Web server (or message sender) may have its messages processed by a

different application server from one request to the next.

0

50

100

150

200

250

300

350

400

450

M
es

sa
ge

s
pe

r S
ec

on
d

(M
PS

)

100 1000
Message Size (Bytes)

Many-to-Many (Queue)

MQSeries SonicMQ

ANALYZING THE RESULTS

Test results indicate that SonicMQ consistently achieves higher throughput than MQSeries, yielding better

performance results in all cases except many-to-one queuing. The following sections explore several

aspects of SonicMQ’s underlying architecture that are the likely cause of its overall high performance.

Application requirements and individual deployment scenarios both play a major role in determining

whether system performance is sufficient, especially for high-volume Internet applications. As a result,

custom performance tuning of both products would be expected to improve overall test results.

Message Flow Control
When messages are sent at a faster rate than they can be received at their destination, a broker must save

them for delivery. When capacity limits within the broker are reached, the sending client must be throttled

using flow control to avoid losing messages. The capacity limit may be predefined administratively or

determined by limitations in memory or disk space. How and when flow control is applied can significantly

alter the performance results of the messaging system.

When many messages are allowed to accumulate in a broker’s memory before flow control is applied, the

sending client will attain a high level of performance until the flow control point is reached. While this may

be desirable in some cases, this increase in speed comes at a price. Improved service to one sender may

reduce the CPU resources and memory available to other clients, potentially causing slowdowns in overall

message throughput.

 Page 8 of 13

The following graphs depict the send and receive rates for a test where multiple senders send as many

messages as possible to a single receiver. In the graph below, SonicMQ is configured with a 10MB queue

limit, a single queue receiver, and five queue senders. The initial send rate achieved for the 10MB queue

demonstrates the effect of filling memory before flow control is applied, which occurs approximately 70

seconds into the test. After flow control is applied, 10MB of memory is being used at the broker by

messages buffered for delivery.

SonicMQ 10MB Queue Send and Receive Rates

0

50

100

150

200

0 20 40 60 80 100 120 140 160 180

Seconds

M
es

sa
ge

s
pe

r S
ec

on
d

(M
PS

)

Send Rate (5 Clients) Receive Rate (1 Client)

In the next graph, the queue limit is set to 1MB, which is the default configuration for SonicMQ. A 1MB

queue limit provides a smaller amount of time where the send rates are higher than the receive rate, and less

memory is used for messages.

SonicMQ 1MB Queue Send and Receive Rates

0

50

100

150

200

0 20 40 60 80 100 120 140 160 180

Seconds

M
es

sa
ge

s
pe

r S
ec

on
d

(M
PS

)

Send Rate (5 Clients) Receive Rate (1 Client)

Another effect of high queue size limits is increased delivery time for each message, since buffered

messages will spend more time in memory and will take longer to arrive at a receiver.

Send rates alone do not accurately reflect broker performance. In addition to send rates, the total number of

messages delivered in a system under load must be considered in “real world” performance evaluations.

Excessive buffering typically hinders absolute throughput. Any time the send rate exceeds the receive rate,

flow control has taken effect. As a result, messages may be buffered in the broker and remain undelivered

for a measurable period of time.

 Page 9 of 13

The appropriate size limits that govern flow control will vary between applications. It may be advantageous

to enable a high send rate for a client, particularly if the number of messages will be small and buffering

will not have a great effect. SonicMQ allows the effect of flow control to be adjusted by providing tunable

buffer sizes for publish and subscribe. For publish/subscribe messages, the parameter

OUTPUT_QUEUE_SIZE can be used to adjust the buffer size for reliable messages and

GUAR_QUEUE_SIZE can be used for persistent messages. For queue-based messaging, the size of the

queue affects when flow control is applied.

Save/Retrieve Extent
For certain applications, limiting the size of a queue to save memory may be desirable. However, it may not

be possible to allow a message sender to be stopped by flow control. For those cases SonicMQ provides the

Save Extent parameter, which defines the queue size at which messages will be saved in the database. This

technique saves memory by using disk space for queue storage, allowing large queues to be handled

efficiently with minimal affect on overall broker performance.

Syncpoint
A syncpoint in SonicMQ is the time where the running state of the message broker is saved in the recovery

log files. The information needed to ensure the delivery of guaranteed messages is stored during a

syncpoint. Reliable messaging does not require syncpoints to be performed. Syncpoints provide a safe

starting point for recovery operations in the case of broker machine failure, and allow older recovery

information to be discarded once the syncpoint is complete.

In SonicMQ, a syncpoint is performed when the broker fills one log file and switches to the second. The

length of the log files therefore determines how often syncpoints will occur. Because the syncpoint process

consumes resources in the broker, longer log files will yield higher performance levels overall. The

SonicMQ broker will provide a warning when syncpoint operations account for more than 50% of the total

log file size.

PERFORMANCE CONSIDERATIONS

Java Virtual Machine
Both the SonicMQ broker and standard client are written in Java; as a result, the Java Virtual Machine

(JVM) used to run SonicMQ can have a significant impact on overall messaging performance. Recent JVM

advances allow for just-in-time compilation of Java classes, enhanced garbage collection, efficient input

and output processing, and other significant capabilities. These advances can improve overall performance

by a factor of 300% in some cases, making the choice of JVM critical to attaining high performance levels.

Another significant factor is the size of the Java heap, which is typically specified on the JVM command

line with a parameter such as –mx. Typically this parameter is set to 128 or 256 MB. If this parameter

exceeds the memory available to the JVM process, performance may significantly degrade as a result of

page swapping in the underlying operating system. The memory available to the JVM may not match the

total memory in the broker machine due to the memory requirements of other processes. In this case,

lowering the total heap for the JVM will increase performance.

 Page 10 of 13

Client Acknowledge
When using publish/subscribe messaging, guaranteed messages may either be acknowledged automatically

by message receivers or acknowledged through “client acknowledge,” which is under the control of the

calling program. When client acknowledge is used, the message sender will not be able to send subsequent

messages until the acknowledgement occurs. To avoid unnecessary slowdown when using guaranteed

messages, client acknowledge should be performed as quickly as possible.

Disk Drive Caching
Disk file access from the broker can have a major influence on overall performance. Increased drive speeds

directly translate to higher message throughput when handling guaranteed messages. Many disk drive

controllers support write caches that allow disk writes to be delayed, increasing write speeds for the

operating system. While a write cache increases performance, it also increases the possibility that messages

will be lost in a broker machine failure. For message recoverability, the SonicMQ broker requires that

saved messages actually be written to disk (in addition to being cached). As a result, caching controllers

should only have cache enabled if the controller supports write-through capability, or if message

recoverability is not required.

Queue Prefetch
SonicMQ supports prefetching messages from a queue to optimize overall throughput. Prefetching allows a

client to receive messages from the SonicMQ broker before being explicitly requested by the client,

eliminating the overhead of broker requests on a per-message basis. However, prefetching also changes the

operation of the SonicMQ system by allowing messages to accumulate at the client until an application-

defined count is reached.

The performance gain using prefetching is primarily realized on lightly loaded brokers, where a receiving

client tends to govern overall throughput. When the broker is operating at full capacity, other factors (such

as queue size and disk I/O) tend to limit message delivery rates.

CONCLUSION

Though the Java Message Service (JMS) specification defines a standard programming interface for

messaging systems, implementation of the specification can result in products with significant performance

differences. This report shows a variety of typical high-volume business scenarios and how two JMS

implementations, Progress SonicMQ and IBM MQSeries, perform differently under those conditions.

The test results demonstrate that technology design and underlying architecture are critical to the

performance and scalability of a JMS solution. This report shows superior results in most scenarios for

Progress SonicMQ.

Application performance will vary based on functional requirements and the individual deployment

environment. It is important to remember that, while these tests reflected an “out-of-the-box” configuration,

fine-tuning may lead to overall performance improvements for both implementations.

 Page 11 of 13

APPENDIX A: DETAILED TEST RESULTS

Test Description
(Client Configuration)

Message
Size

(Bytes)

Durable/
Persistent

SonicMQ
Msgs/Sec

Sent

SonicMQ
Msgs/Sec
Received

MQSeries
Msgs/Sec

Sent

MQSeries
Msgs/Sec
Received

SonicMQ
Received
% Faster

MQSeries
Received
% Faster

One-to-One (Publish/Subscribe)

1 sender, 1 receiver 100 No 2,365 2,355 141 106 2,122%

1 sender, 1 receiver 100 Yes 92 91 112 78 17%

1 sender, 1 receiver 1,000 No 559 559 134 100 459%

1 sender, 1 receiver 1,000 Yes 229 229 108 74 209%

100 senders, 100 receivers 100 No 5,655 5,653 30 14 40,279%

100 senders, 100 receivers 100 Yes 580 497 56 48 935%

100 senders, 100 receivers 1,000 No 2,011 2,011 21 4 50,175%

100 senders, 100 receivers 1,000 Yes 632 630 47 30 2,000%

250 senders, 250 receivers 100 No 4,977 4,975 21 4 124,275%

250 senders, 250 receivers 100 Yes 918 870 38 29 2,900%

250 senders, 250 receivers 1,000 No 1,330 1,330 7 4 33,150%

250 senders, 250 receivers 1,000 Yes 880 880 N/A N/A

One-to-Many (Publish/Subscribe)

1 sender, 50 receivers 100 No 264 13,111 27 470 2,690%

1 sender, 50 receivers 100 Yes 47 2,353 22 174 1,252%

1 sender, 50 receivers 1,000 No 95 4,770 26 458 941%

1 sender, 50 receivers 1,000 Yes 66 3,322 22 158 2,003%

One-to-Many (Queue)

1 sender, 50 receivers 100 No 303 303 226 225 35%

1 sender, 50 receivers 100 Yes 239 239 187 186 28%

1 sender, 50 receivers 1,000 No 287 287 196 196 46%

1 sender, 50 receivers 1,000 Yes 189 189 162 162 17%

Many-to-One (Queue)

50 senders, 1 receiver 100 No 232 227 183 179 27%

50 senders, 1 receiver 100 Yes 16 12 124 121 908%
50 senders, 1 receiver 1,000 No 549 548 153 150 265%
50 senders, 1 receiver 1,000 Yes 12 11 107 104 845%

Many-to-Many (Publish/Subscribe)

50 senders, 50 receivers 100 No 241 11,914 25 374 3,086%

50 senders, 50 receivers 100 Yes 11 515 20 133 287%

50 senders, 50 receivers 1,000 No 91 4,533 24 337 1,245%

50 senders, 50 receivers 1,000 Yes 10 520 4 138 277%

Many-to-Many (Queue)

50 senders, 50 receivers 100 No 750 745 694 690 8%

50 senders, 50 receivers 100 Yes 411 406 218 214 90%

50 senders, 50 receivers 1,000 No 1,190 1,188 635 632 88%

50 senders, 50 receivers 1,000 Yes 397 396 206 203 95%

 Page 12 of 13

APPENDIX B: TEST ENVIRONMENT

Progress SonicMQ
Tests were performed on SonicMQ Enterprise Edition 2000.1. No additional patches were required.

IBM MQSeries
Tests were performed on MQSeries Version 5.1 for Windows NT. The following IBM SupportPacs were required to

complete the tests:

- PTF U200095 (12/20/99) – Cumulative release of fixes for MQSeries 5.1 on Windows NT

- MA0C (10/22/99) – Enables publish and subscribe capabilities

- MA0F (12/7/99) – Supports Application Messaging Interface 1.0 (API for point-to-point and publish/subscribe as well
as administered settings in a repository)

- MA88 (12/17/99) – Adds Java client capabilities and JMS support

Software Settings
• Queue limit set to 1MB in SonicMQ; set to 1000 entries in MQSeries

• MQSeries set to allow 1000 client connections

• IBM JVM V1.1.8 (with JIT enabled) used on both client and server

• Memory limit for SonicMQ set to 256MB (via server JVM); no memory limit set for MQSeries

• Client JVM used default settings (no command line options specified)

• Hard disk write caching was disabled

• No other tuning or product configuration was performed

Hardware Configuration

Server Machine:

Dell PowerEdge 6300 server

Four 550MHz XEON CPUs

2GB SD100 RAM

3Com 3C905B Fast EtherLink XL 10/100 PCI LAN card

Adaptec RAID controller running RAID 0 on three IBM 9.1GB Ultra-2/LVD SCSI 7200 RPM hard disks

Windows NT 4.0 SP5 using NTFS volumes

Quad-Processor Server Dual-Processor Clients

100 Mbs 100Base-T

 Page 13 of 13

Client Machines (5):
Dell 410 workstation

Two 500MHz Pentium III CPUs

256MB SD100 RAM

EIDE ATA-33 controller

Maxtor 10GB 7200 RPM EIDE hard disk

3Com 3C905B Fast EtherLink XL 10/100 PCI LAN card

Windows NT 4.0 SP5 using NTFS volumes

Networking:
Xylan OmniSwitch with guaranteed 100Mbs throughput for 12 connections

Dedicated 100Mbs LAN segment

